cho hình bình hành abcd , trên đường chéo ac lấy 2 điểm m và n sao cho am = cn . tứ giác bndm là hình gì
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AB=CD,ˆBAM=ˆNCD,AB=CD→ΔAMB=ΔCND(c.g.c)→MB=DNAB=CD,BAM^=NCD^,AB=CD→ΔAMB=ΔCND(c.g.c)→MB=DN
→ˆAMB=ˆDNC→ˆBMN=ˆDNM→BM//DN→◊BNDM→AMB^=DNC^→BMN^=DNM^→BM//DN→◊BNDM là hình bình hành
b.Để ◊BNDM◊BNDM là hình thoi
→MN⊥BD→AC⊥BD→◊ABCD→MN⊥BD→AC⊥BD→◊ABCD là hình thoi
c.Để K là trung điểm AD →AK=KD→AK=KD mà KM//DN→MKM//DN→M là trung điểm AN →AM=MN=NC→AM=MN=NC
a.Xét ΔAME và ΔCNF có
AM=CN(gt)
Góc MAE= góc NCF
AE=CF(gt)
Do đó ΔAME = ΔCNF (c.g.c)
=> ME=NF(2 cạnh tương ứng)
Tương tự ΔDMF= ΔBNE(c.g.c)
=>MF=NE(2 cạnh tương ứng)
Tứ giác EMFN có
ME=NF(gt)
MF=NE(gt)
=>EMFN là hình bình hành
b) b/ Ta có: OE=OF (MENF là hình bình hành)
ON=OM(MENF là hình bình hành)
OD=OB (ABCD là hình bình hành)
OA=OC(ABCDlà hình bình hành)
=>AC, BD, MN, E giao nhau tại O
hay AC, BD, MN, EF đồng quy
cn lại bó tay
a: Xét tứ giác BMDN có
O là trung điểm của MN
O là trung điểm của BD
Do đó: BMDN là hình bình hành
Giúp mình với