K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2017

\(\text{1+2+3+4+5+...+100-101-102-103-...-200}\)

\(\text{=1+2+3+4+5+...+100-(100+1)-(100+2)-(100+3)-...-(100+100)}\)

\(\text{=1+2+3+4+5+...+100-100-1-100-2-100-3-...-100-100}\)

\(\text{=(1+2+3+4+5+...+100-1-2-3-...-100)-100-100-100-...-100}\)(có 100 số 100)

\(=0-100-100-100-...-100\)(có 100 số 100)

\(=-10000\)

17 tháng 12 2023

(101+102+...+200)+(-1-2-3-...-100)

=(101-1)+(102-2)+...+(200-100)

=100+100+...+100

=100*100=10000

23 tháng 4 2017

A=\(\frac{1}{100}\)+\(\frac{1}{101}\)+\(\frac{1}{102}\)+...+\(\frac{1}{200}\)

   (Sử dung phương pháp chặn số đầu)

\(\frac{1}{100}\)>\(\frac{1}{101}\)

\(\frac{1}{100}\)>\(\frac{1}{102}\)

           ...

\(\frac{1}{100}\)>\(\frac{1}{200}\)

nên \(\frac{1}{100}\)+\(\frac{1}{101}\)+\(\frac{1}{102}\)+...+\(\frac{1}{200}\)\(\frac{1}{100}\)+\(\frac{1}{100}\)+...+\(\frac{1}{100}\)(có 101 phân số)

\(\Rightarrow\)\(\frac{1}{100}\)+\(\frac{1}{101}\)+\(\frac{1}{102}\)+...+\(\frac{1}{200}\)>101.\(\frac{1}{100}\)=\(\frac{101}{100}\)>1>\(\frac{3}{4}\)

\(\Rightarrow\)A >\(\frac{3}{4}\)

14 tháng 8 2016

A=1+(-3)+5+(-7)+...17+(-19)

=> A=(1+5+9+13+17)-(3+7+11+15+19)

=>A=45-55

=>A=-10

14 tháng 8 2016

Ta có : 

A=1+(-3)+5+(-7)+...17+(-19)

=> A=(1+5+9+13+17)-(3+7+11+15+19)

=>A=45-55

=>A=-10

Đap số : -10

14 tháng 12 2022

A= [(1+101)x101:2]-(102-103)
A= 5151+1
A=5152

B= [1+(-3)]+[4+(-5)]+.......[101+(-103)]+105
B= (-2)+(-2)...........+(-2)+105

=> A>B
B=(-2)x26+105
B=(-56)+105
B= 49

14 tháng 12 2022

cái => A>B nó nằm ở dưới cùng ấy. Nãy gõ chứ nó bị nhảy phím

22 tháng 11 2016

Xét vế trái: 1-1/2+1/3-1/4+1/5-1/6+...+1/199-1/200

=(1+1/3+1/5+..+1/199)-(1/2+1/4+..+1/200)

=(1+1/2+1/3+1/4+1/5+...+1/199+1/200)-2.(1/2+1/4+..+1/200)

=1+1/2+1/3+1/4+1/5+..+1/199+1/200-1-1/2-...-1/100

=1/101+1/102+1/103+...1/200

Vậy vế trái bằng vế phải

18 tháng 7 2016

1 + ( -2 ) + (-3 ) + 4 + 5 + ( -6 ) + ..... + 99 - 100 - 101 + 102 + 103 
[ 1 + ( -2 )] + [(-3 ) + 4] + [5 + ( -6 )] + ..... +[-98+ 99 ]- 100 - 101 + 102 + 103 
=  ( -1 ) + 1 + ( -1 ) + ..... + (-1 ) +....+ (-1 )- 100 -101 + 102 + 103 
= 0 + 50 - 100 - 101 + 102 + 103 
= 54
Mình không chắc 

19 tháng 7 2016

1+(-2)+(-3)+4+5+(-6)+(-7)+8+.....+99-100-101+102+103

= 1 + ( 2 - 3 - 4 + 5 ) + (6 - 7 - 8 + 9 ) + ... ( 98 - 99 -100 + 101 ) +102

= 1 + 0 + 0 + 0 + .... + 102

=103

2 tháng 8 2023

\(A=\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{199}+\dfrac{1}{120}\left(a\right)\)

\(\Rightarrow A=\left(\dfrac{1}{101}+\dfrac{1}{102}+...\dfrac{1}{125}\right)+\left(\dfrac{1}{126}+\dfrac{1}{127}+...\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+...\dfrac{1}{175}\right)+\left(\dfrac{1}{176}+\dfrac{1}{177}+...\dfrac{1}{200}\right)\)

\(\Rightarrow A>25.\dfrac{1}{125}+25.\dfrac{1}{150}+25.\dfrac{1}{175}+25.\dfrac{1}{200}\)

\(\Rightarrow A>\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}\)

\(\Rightarrow A>\dfrac{168+140+120+105}{840}=\dfrac{533}{840}>\dfrac{5}{8}\left(\dfrac{533}{840}>\dfrac{525}{840}\right)\)

\(\Rightarrow A>\dfrac{5}{8}\left(1\right)\)

\(\left(a\right)\Rightarrow A=\left(\dfrac{1}{101}+...\dfrac{1}{120}\right)+\left(\dfrac{1}{121}+...\dfrac{1}{140}\right)+\left(\dfrac{1}{141}+...\dfrac{1}{160}\right)+\left(\dfrac{1}{161}+...\dfrac{1}{180}\right)+\left(\dfrac{1}{181}+...\dfrac{1}{200}\right)\)

\(\Rightarrow A< 20.\dfrac{1}{100}+20.\dfrac{1}{120}+20.\dfrac{1}{140}+20.\dfrac{1}{160}+20.\dfrac{1}{180}\)

\(\Rightarrow A< \dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}\)

\(\Rightarrow A< \dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{504+420+360+315+280}{2520}=\dfrac{1879}{2520}< \dfrac{3}{4}\left(\dfrac{1879}{2520}< \dfrac{1890}{2520}\right)\)

\(\Rightarrow A< \dfrac{3}{4}\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\dfrac{5}{8}< A< \dfrac{3}{4}\left(dpcm\right)\)