Tìm số tự nhiên n biết 3n+2 chia hết cho n-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì (3n+2) chia hết cho n+1
=>3n chia hết cho n+1 và 2 chia hết cho n+1
=>n+1 = 1 hoặc 2 (vì 2 chia hết cho 1 và 2 thôi)
Vì n không thể là 0 nên n =2
ok
3n + 2 chia hết cho n - 1
=> 3n -3 + 5 chia hết cho n - 1
=> 3 . ( n - 1 ) + 5 chia hết cho n - 1 mà 3.( n - 1 ) chia hết cho n - 1 => 5 chia hết cho n - 1 => n - 1 thuộc Ư ( 5 ) = { 1,5 }
=> n thuộc { 2 , 6 }
Vậy n thuộc { 2,6 }
\(3n+2⋮n-1\Leftrightarrow3\left(n-1\right)+5⋮n-1\)
\(\Rightarrow5⋮n-1\) (vì 3(n-1) chia hết cho n-1)
\(\Rightarrow n-1\inƯ\left(5\right)=\left\{1;5\right\}\)
\(n-1=1\Rightarrow n=2\)
\(n-1=5\Rightarrow n=6\)
Vậy \(n\in\left\{2;6\right\}\)
Ta có \(\frac{3n+2}{n-1}\)(với n>1)
\(=\frac{3n-3+5}{n-1}\)(với n>1)
\(=\frac{3\left(n-1\right)+5}{n-1}\)(với n>1)
=>n \(\in\) Ư(5)={1;5}
nếu n-1=1=>n=2
nếu n-1=5=>n=6
Vậy => n=2;6
3n+2 \(⋮\) n-1
=> 3(n-1)+5 \(⋮\) n-1
mà 3(n-1) \(⋮\) n-1 => 5 \(⋮\) n-1
hay n-1 \(\in\) Ư(5)={1;5}
Ta có bảng sau
n-1 | 1 | 5 |
n | 2 | 6 |
Vậy n \(\in\) {2;6}
Ta có :
3n+2 chia hết cho n-1
Suy ra 3 x ( n-1 ) + 5 chia hết cho n-1
Mà 3 x ( n-1 ) chia hết cho n-1
Suy ra 5 chia hết cho n-1
Suy ra n-1 thuộc Ư(5) = 1 ;5 (trong ngoặc nhọn)
n thuộc 2 ; 6 (trong ngoặc nhọn)
Vậy : ........