K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2017

A=5-x2-x

-A=x2+x-5

-A=(x2+x+1/4)-1/4-5

-A=(x+1/2)2-21/5 >=-21/5

=>A<=21/5

Dấu "=" xảy ra khi x=-1/2

k cho mình nha

17 tháng 12 2018

Ta có : 5 - x^2 -x

=   -x^2 -x -1/4 + 21/4

= -(x^2 + x +1/4) +21/4

= -[x^2 +2*x*1/2 + (1/2)^2 ] +21/4

= -(x+ 1/2)^2 + 21/4

Vì (x+ 1/2)^2 lớn hơn hoặc bằng 0

=> -(x+ 1/2)^2 bé hơn hoặc bằng 0

=> -(x+ 1/2)^2 +21/4 bé hơn hoặc bằng 21/4

Đẳng thức xảy ra khi x= -1/2

Vậy GTLN của B=21/4 khi x= -1/2

17 tháng 12 2018

\(B=5-x^2-x\)

\(B=-\left(x^2+x-5\right)\)

\(B=-\left[x^2+2\cdot x\cdot\frac{1}{2}\cdot\left(\frac{1}{2}\right)^2+\frac{1}{4}-\frac{21}{4}\right]\)

\(B=-\left[\left(x+\frac{1}{2}\right)^2-\frac{21}{4}\right]\)

\(B=\frac{21}{4}-\left(x+\frac{1}{2}\right)^2\le\frac{21}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow x+\frac{1}{2}=0\Leftrightarrow x=\frac{-1}{2}\)

Vậy......

20 tháng 7 2020

Đặt \(\sqrt{x}=a\Rightarrow a^2=x\)

Khi đó ta có được:

\(A=\frac{a-2}{a^2+5}\Rightarrow A\cdot a^2+5\cdot A-a+2=0\)

\(\Leftrightarrow A\cdot a^2-a+\left(5A+2\right)=0\)

\(\Delta=1-4A\left(5A+2\right)=-20A^2-8A+1\ge0\)

\(\Rightarrow\left(1-10A\right)\left(2A+1\right)\ge0\Rightarrow-\frac{1}{2}\le A\le\frac{1}{10}\)

27 tháng 8 2020

Ta có \(\left(x+1\right)^{2022}\ge0\forall x\Rightarrow A=2020-\left(x+1\right)^{2022}\le2020\forall x\)

Dấu "=" xảy ra <=> x + 1 = 0

=> x = -1

Vậy GTLN của A là 2020 khi x = -1

b) Để C đạt GTLN 

=> \(\frac{5}{\left(x+3\right)^2}\)lớn nhất

=> (x - 3)2 nhỏ nhất 

=> (x - 3)2 = 1

=> \(\orbr{\begin{cases}x-3=1\\x-3=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=2\end{cases}}\)

Nếu x = 4  => C = 6

Vậy GTLN của C là 6 khi x = 4 hoặc x = 2

27 tháng 8 2020

A = 2020 - ( x + 1 )2022

-( x + 1 )2022 ≤ 0 ∀ x => 2020 - ( x + 1 )2 ≤ 2020 

Đẳng thức xảy ra <=> x + 1 = 0 => x = -1

=> MaxA = 2020 <=> x =  -1

C = \(\frac{5}{\left(x-3\right)^2+1\left(^∗\right)}\)

Để C đạt GTLN => (*) = ( x - 3 )2 + 1 đạt GTNN

( x - 3 )2 ≥ 0 ∀ x => ( x - 3 )2 + 1 ≥ 1 

=> Min(*) = 1 <=> x - 3 = 0 => x = 3

=> MaxC = 5 <=> x = 3

AH
Akai Haruma
Giáo viên
11 tháng 3 2021

Lời giải:

$A=\frac{x^2-x+1}{x^2+x+1}$

$\Leftrightarrow A(x^2+x+1)-(x^2-x+1)=0$

$\Leftrightarrow x^2(A-1)+x(A+1)+(A-1)=0$

Coi đây là PT bậc 2 ẩn $x$. Vì $A$ tồn tại nên  PT luôn có nghiệm, do đó:

$\Delta=(A+1)^2-4(A-1)^2\geq 0$

$\Leftrightarrow (3-A)(3A-1)\geq 0$

$\Leftrightarrow \frac{1}{3}\leq A\leq 3$

Vậy $A_{\max}=3$ và $A_{\min}=\frac{1}{3}$

Giá trị max đạt được khi $x=-1$ và min đạt được khi $x=1$

 

 

9 tháng 2 2020

Các bạn giúp mình vs mình cần gấp . Nếu ai giúp mình sẽ k co

3 tháng 7 2021

\(A=\dfrac{1-\sqrt{x}}{\sqrt{x}+2}=\dfrac{3-\left(\sqrt{x}+2\right)}{\sqrt{x}+2}=\dfrac{3}{\sqrt{x}+2}-1\)

Có \(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+2\ge2\Leftrightarrow\dfrac{3}{\sqrt{x}+2}\le\dfrac{3}{2}\)\(\Leftrightarrow\dfrac{3}{\sqrt{x}+2}-1\le\dfrac{1}{2}\)\(\Leftrightarrow A\le\dfrac{1}{2}\)

Dấu "=" xảy ra khi x=0 (tm)

Vậy \(A_{max}=\dfrac{1}{2}\)

Bài 2:

Đk: \(x\ge3;y\ge5;z\ge4\)

Pt\(\Leftrightarrow\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}+\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}+\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}=20\)

Áp dụng AM-GM có:

\(\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}\ge2\sqrt{\sqrt{x-3}.\dfrac{4}{\sqrt{x-3}}}=4\)

\(\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}\ge6\)

\(\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}\ge10\)

Cộng vế với vế \(\Rightarrow VT\ge20\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\sqrt{x-3}=\dfrac{4}{\sqrt{x-3}}\\\sqrt{y-5}=\dfrac{9}{\sqrt{y-5}}\\\sqrt{z-4}=\dfrac{25}{\sqrt{z-4}}\end{matrix}\right.\)\(\Leftrightarrow x=7;y=14;z=29\) (tm)

Vậy...

3 tháng 7 2021

I miss you Được em, hoặc trực tiếp nhóm thành HĐT, một vế là tổng các bình phương, vế còn lại bằng 0