
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


A=5-x2-x
-A=x2+x-5
-A=(x2+x+1/4)-1/4-5
-A=(x+1/2)2-21/5 >=-21/5
=>A<=21/5
Dấu "=" xảy ra khi x=-1/2
k cho mình nha

2/
a, \(A=2x^2+6x-5=2\left(x^2+3x-\frac{5}{2}\right)=2\left(x^2+2x\cdot\frac{3}{2}+\frac{9}{4}-\frac{19}{4}\right)=2\left[\left(x+\frac{3}{2}\right)^2-\frac{19}{4}\right]=2\left(x+\frac{3}{2}\right)^2-\frac{19}{2}\)
Vì \(\left(x+\frac{3}{2}\right)^2\ge0\Rightarrow A=\left(x+\frac{3}{2}\right)^2-\frac{19}{2}\ge-\frac{19}{2}\)
Dấu "=" xảy ra khi x=-3/2
Vậy Amin=-19/2 khi x=-3/2
b,bài này phải tìm min
\(B=\left(2x-x\right)\left(x+4\right)=x\left(x+4\right)=x^2+4x=x^2+4x+4-4=\left(x+2\right)^2-4\)
Vì \(\left(x-2\right)^2\ge0\Rightarrow B=\left(x-2\right)^2+4\ge4\)
Dấu "=" xảy ra khi x = 2
Vậy Bmin=4 khi x=2


\(A=-2x^2+2x-5=-2\left(x^2-x+\frac{1}{4}\right)-4\frac{1}{2}=-2\left(x-\frac{1}{2}\right)^2-4\frac{1}{2}\)\(-4\frac{1}{2}\)
Ta thấy \(-2\left(x-\frac{1}{2}\right)^2\le0\Rightarrow-2\left(x-\frac{1}{2}\right)^2-4\frac{1}{2}\le-4\frac{1}{2}\)
\(\Rightarrow\)giá trị lớn nhất la \(-4\frac{1}{2}\Leftrightarrow x=\frac{1}{2}\)

Bài 1 :
a, \(A=x^2-4x+6=x^2-4x+4+2=\left(x-2\right)^2+2\ge2\)
Dấu ''='' xảy ra khi x = 2
Vậy GTNN A là 2 khi x = 2
b, \(B=y^2-y+1=y^2-2.\frac{1}{2}y+\frac{1}{4}+\frac{3}{4}=\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu ''='' xảy ra khi y = 1/2
Vậy GTNN B là 3/4 khi y = 1/2
c, \(C=x^2-4x+y^2-y+5=x^2-4x+4+y^2-y+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x-2\right)^2+\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu ''='' xảy ra khi \(x=2;y=\frac{1}{2}\)
Vậy GTNN C là 3/4 khi x = 2 ; y = 1/2
Bài 3 :
a, \(x^2-6x+10=x^2-2.3.x+9+1=\left(x-3\right)^2+1\ge1>0\)( đpcm )
b, \(-y^2+4y-5=-\left(y^2-4y+5\right)=-\left(y^2-4y+4+1\right)=-\left(y-2\right)^2-1< 0\)( đpcm )
Bài 4 :
\(B=\left(x^2+y^2\right)=\left(x+y\right)^2-2xy\)
Thay (*) ta được : \(225-2\left(-100\right)=225+200=425\)
Bài 5 :
\(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)\)
\(=2y.2x=4xy=VP\)( đpcm )

\(A\left(x\right)=-\left(x^2-\frac{5}{3}x\right)+1=-3\left(x^2-2.x.\frac{5}{6}+\left(\frac{5}{6}\right)^2\right)+1+3.\left(\frac{5}{6}\right)^2\)
\(=-3\left(x-\frac{5}{6}\right)^2+\frac{37}{12}\le\frac{37}{12}\)
Dấu "=" xảy ra khi \(x-\frac{5}{6}=0\Leftrightarrow x=\frac{5}{6}\)
Vậy GTLN của A là 37/12.
b, c làm tương tự.
Ta có : 5 - x^2 -x
= -x^2 -x -1/4 + 21/4
= -(x^2 + x +1/4) +21/4
= -[x^2 +2*x*1/2 + (1/2)^2 ] +21/4
= -(x+ 1/2)^2 + 21/4
Vì (x+ 1/2)^2 lớn hơn hoặc bằng 0
=> -(x+ 1/2)^2 bé hơn hoặc bằng 0
=> -(x+ 1/2)^2 +21/4 bé hơn hoặc bằng 21/4
Đẳng thức xảy ra khi x= -1/2
Vậy GTLN của B=21/4 khi x= -1/2
\(B=5-x^2-x\)
\(B=-\left(x^2+x-5\right)\)
\(B=-\left[x^2+2\cdot x\cdot\frac{1}{2}\cdot\left(\frac{1}{2}\right)^2+\frac{1}{4}-\frac{21}{4}\right]\)
\(B=-\left[\left(x+\frac{1}{2}\right)^2-\frac{21}{4}\right]\)
\(B=\frac{21}{4}-\left(x+\frac{1}{2}\right)^2\le\frac{21}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow x+\frac{1}{2}=0\Leftrightarrow x=\frac{-1}{2}\)
Vậy......