K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2017

Đặt S=3+3^3+3^5+...+3^31

Số số hạng trong S là : (31-1):2+1=16 (số hạng)

Có 16 chia hết cho 2 ta chia thành các tổng 2 số hạng:

S=(3+3^3)+3^4.(3+3^3)+3^8.(3+3^3)+...+3^28.(3+3^3)

S=30+3^4.30+3^8.30+...+3^28.30

S=(1+3^4+3^8+...+3^28).30 chia hết cho 30.

16 tháng 12 2017

A=3+3^3+3^5+3^7+...3^31

=(3+3^3)+(3^5+3^7)+....+(3^29+3^31)

=(3+3^3)+3^4.(3+3^3)+...+3^28.(3+3^3)

=30.(1+3^4+...+3^28).

=> A chia hết cho 30  (đpcm)

\(3+3^3+3^5+3^7+...+3^{31}\)

\(=\left(3+3^3\right)+\left(3^5+3^7\right)+...+\left(3^{29}+3^{31}\right)\)

\(=\left(3+3^3\right)+3^4\left(3+3^3\right)+...+3^{28}\left(3+3^3\right)\)

\(=30\cdot\left(1+3^4+...+3^{28}\right)⋮30\)

9 tháng 12 2023

Đặt S=3+3^3+3^5+...+3^31

Số số hạng trong S là : (31-1):2+1=16 (số hạng)

Có 16 chia hết cho 2 ta chia thành các tổng 2 số hạng:

S=(3+3^3)+3^4.(3+3^3)+3^8.(3+3^3)+...+3^28.(3+3^3)

S=30+3^4.30+3^8.30+...+3^28.30

S=(1+3^4+3^8+...+3^28).30 chia hết cho 30.

17 tháng 10 2021

undefined

30 tháng 6 2023

\(S=3+3^2+3^3+3^4+3^5+3^6+3^7+3^8+3^9\\ =\left(3+3^2+3^3\right)+3^3.\left(3+3^2+3^3\right)+3^6.\left(3+3^2+3^3\right)\\ =39+3^3.39+3^6.39\\ =-39.\left(-1-3^3-3^6\right)⋮\left(-39\right)\)

30 tháng 6 2023

S = 3 + 32 + 33 + 34 + 35 + 3+ 37 + 38 + 39

S = ( 3 + 32 + 33 ) +3+ 35 + 36 + 37 + 38 + 3

S = 39 + 34 + 35 + 36 + 37 + 38 + 39

Vì 39 ⋮ -39

<=> S ⋮ -39

17 tháng 12 2021

Các bạn giúp mình nhé

18 tháng 12 2021

\(S=\left(1+3\right)+...+3^8\left(1+3\right)=4\left(1+...+3^8\right)⋮4\)

19 tháng 12 2021

\(S=\left(1+3+3^2\right)+...+3^7\left(1+3+3^2\right)\)

\(=13\left(1+...+3^7\right)⋮13\)

23 tháng 12 2021

\(S=1+3+3^2+3^3+3^4+3^5+3^6+3^7+3^8+3^9\)

\(S=\left(1+3\right)+\left(3^2+3^3\right)+\left(3^4+3^5\right)+\left(3^6+3^7\right)+\left(3^8+3^9\right)\)

\(S=4+3^2\left(1+3\right)+3^4\left(1+3\right)+3^6\left(1+3\right)+3^8\left(1+3\right)\)

\(S=4+3^2.4+3^4.4+3^6.4+3^8.4\)

\(S=4\left(3^2+3^4+3^6+3^8\right)\)

\(4⋮4\\ \Rightarrow4\left(3^2+3^4+3^6+3^8\right)⋮4\\ \Rightarrow S⋮4\)

`#3107.101107`

\(A=1+3+3^2+3^3+...+3^{101}\)

$A = (1 + 3 + 3^2) + (3^3 + 3^4 + 3^5) + ... + (3^{99} + 3^{100} + 3^{101}$

$A = (1 + 3 + 3^2) + 3^3 (1 + 3 + 3^2)  + ... + 3^{99}(1 + 3 + 3^2)$

$A = (1 + 3 + 3^2)(1 + 3^3 + ... + 3^{99})$

$A = 13(1 + 3^3 + ... + 3^{99})$

Vì `13(1 + 3^3 + ... + 3^{99}) \vdots 13`

`\Rightarrow A \vdots 13`

Vậy, `A \vdots 13.`

8 tháng 11 2023

\(A=1+3+3^2+3^3+3^4+3^5+...+3^{101}\\=(1+3+3^2)+(3^3+3^4+3^5)+(3^6+3^7+3^8)+...+(3^{99}+3^{100}+3^{101})\\=13+3^3\cdot(1+3+3^2)+3^6\cdot(1+3+3^2)+...+3^{99}\cdot(1+3+3^2)\\=13+3^3\cdot13+3^6\cdot13+...+3^{99}\cdot13\\=13\cdot(1+3^3+3^6+...+3^{99})\)

Vì \(13\cdot(1+3^3+3^6...+3^{99}\vdots13\)

nên \(A\vdots13\)

\(\text{#}Toru\)

10 tháng 10 2021

giúp mình với mình chuẩn bị phải nộp bài rồi T~T 

10 tháng 10 2021

\(B=2+2^2+2^3+...+2^{60}\)

\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\cdot\left(2+...+2^{58}\right)⋮7\)