K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2017

Câu1
a)  Xét ΔABM và  ΔCDM có:
AM = MC ( vì M là trung điểm của AC)
BM = MD ( theo giả thiết -cách vẽ)
góc AMB = góc CMD ( đối đỉnh)
suy ra ΔABM = ΔCDM ( c-g-c)
b) => góc ABM = góc MDC ( 32 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
=> AB // CD ( điều phải chứng minh)

16 tháng 12 2017

giúp với

16 tháng 12 2022

UKM THÌ CÓ BÀI TỰA VẬY BẠN SO ĐC CHỨ 

a) Xét AIM và BIC có:IA = IB (do I là trung điểm của AB);AIM BIC(hai góc đối đỉnh);IM = IC (giảthiết).Do đó AIM = BIC (c.g.c)Suy ra AM = BC (hai cạnh tương ứng) và MAI CBI(hai góc tương ứng)  Mà MAI, CBIlà hai góc ởvịtrí so le trong nên AM // BC.b) Xét ANE và CBE có:EA = EC (do E là trung điểm của AC);AEN CEB(hai góc đối đỉnh);EN= EB(giảthiết).Do đó ANE = CBE (c.g.c)Suy ra NAE BCE(hai góc tương ứng)Mà NAE, BCElà hai góc ởvịtrí so le trong nên AN// BC.c) Ta có AM // BC (theo câu a) và AN // BC (theo câu b)Do đó qua điểm A có hai đường thẳng song song với BC nên theo tiên đềEuclid, hai đường thẳng AM và AN trùng nhau hay ba điểm A, M, N thẳng hàng.Lại có ANE = CBE (theo câu b) nên AN = CB (hai cạnh tương ứng)Mặt khác AM = BC (theo câu a)Do đó AM = AN (cùng bằng BC)  Mà ba điểm A, M, N thẳng hàng nên A là trung điểm của MN.
16 tháng 12 2022

a: Xét ΔAMB và ΔCMD có

MA=MC

góc AMB=góc CMD

MB=MD

Do đó: ΔAMB=ΔCMD

b: Xét tứ giác ABCD có

M là trung điểm chung của AC và BD

nên ABCD là hình bình hành

=>AB//CD và AB=CD

c: Xét tứ giác AKBC có

N là trung điểm chung của AB và KC

nên AKBC là hình bình hành

=>AK//BC

mà AD//BC

nên D,A,K thẳng hàng

15 tháng 12 2023

loading...  loading...  loading...  

18 tháng 12 2023

a: Xét ΔAMB và ΔCMD có

MA=MC

\(\widehat{AMB}=\widehat{CMD}\)

MB=MD

Do đó: ΔAMB=ΔCMD

b: Xét ΔMAD và ΔMCB có

MA=MC

\(\widehat{AMD}=\widehat{CMB}\)

MD=MB

Do đó: ΔMAD=ΔMCB

=>\(\widehat{MAD}=\widehat{MCB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AD//BC

c: Xét ΔNAK và ΔNBC có

NA=NB

\(\widehat{ANK}=\widehat{BNC}\)(hai góc đối đỉnh)

NK=NC

Do đó; ΔNAK=ΔNBC

=>\(\widehat{NAK}=\widehat{NBC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AK//BC

Ta có: AD//BC

AK//BC

AK,AD có điểm chung là A

Do đó: D,A,K thẳng hàng

a: Xét ΔAMI và ΔCMB có

MA=MC

góc AMI=góc CMB

MI=MB
Do đó: ΔAMI=ΔCMB

b: Xét tứ giác ABCI có

M là trung điểm chung của AC và BI

nên ABCI là hình bình hành

Suy ra: AI//BC và AI=BC

Xét tứ giác AKBC có

N là trung điểm chung của AB và KC

nên AKBC là hình bình hành

Suy ra: AK//BC và AK=BC

c: Ta có: AK//BC

AI//BC

Do đó: K,A,I thẳng hàng

mà AK=AI

nên A là trung điểm của KI

1 tháng 12 2021

Xét ΔMAE và ΔMCB có:

         MA = MC (M là trung điểm của AC)

          ∠AME = ∠CMB (2 góc đối đỉnh)

          ME = MB (gt)

⇒ ΔMAE = ΔMCB (c.g.c)

⇒ AE = BC (2 cạnh tương ứng) (1)

Xét ΔNAF và ΔNBC có:

      NA = NB (N là trung điểm của AB)

      ∠ANF = ∠BNC (2 góc đối đỉnh)

       NF = NC (gt)

⇒ ΔNAF = ΔNBC (c.g.c)

⇒ AF = BC (2 cạnh tương ứng) (2)

Từ (1) và (2) ⇒ AE = AF

Ta có: ΔMAE = ΔMCB (cmt)

⇒ ∠MAE = ∠MCB (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong ⇒ AE // BC (3)

Ta có: ΔNAF = ΔNBC (cmt)

⇒ ∠NAF = ∠NBC (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong ⇒ AF // BC (4)

Từ (3) và (4) ⇒ 3 điểm E, A, F thẳng hàng

10 tháng 8 2019

Bạn tham khảo ở đây:

https://h.vn/hoi-dap/question/820073.html

10 tháng 8 2019

băng vũ ơi! mik ko mở đc

23 tháng 12 2016

1. Xét tam giác MAE và tam giác MCB có:

     ME = MB (gt)

     MA = MC (gt)

     Góc M1 = góc M2 (đối đỉnh)

=> Tam giác MAE = Tam giác MCB (c.g.c)

2. Xét tứ giác AEBC có:

     M là trung điểm BE (gt)

     M là trung điểm AC (gt)

=> Tứ giác AEBC là hình bình hành 

=> AE // BC và AE = BC (1)
Xét tứ giác FABC có:

   N là trung điểm BA (gt)

   N là trung điểm FC (gt)

=> Tứ giác FABC là hình bình hành

=> FA // BC và FA = BC (2)

Từ (1), (2) => AE = AF

23 tháng 12 2016


A B C M N E F

Hình xấu quá bạn thông cảm.

a: Xét ΔAMI và ΔCMB có

MA=MC

góc AMI=góc CMB

MI=MB
Do đó: ΔAMI=ΔCMB

b: Xét tứ giác ABCI có

M là trung điểm chung của AC và BI

nên ABCI là hình bình hành

Suy ra: AI//BC và AI=BC

Xét tứ giác AKBC có

N là trung điểm chung của AB và KC

nên AKBC là hình bình hành

Suy ra: AK//BC và AK=BC

c: Ta có: AK//BC

AI//BC

Do đó: K,A,I thẳng hàng

mà AK=AI

nên A là trung điểm của KI

Bài 4: 

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

b: Xét tứ giác AKBC có 

N là trung điểm của AB

N là trung điểm của CK

Do đó: AKBC là hình bình hành

Suy ra: AK=BC

hay AK=2MC

c: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

=>AM⊥BC

mà BC//AK

nên AM⊥AK

hay \(\widehat{MAK}=90^0\)