TGiác ABC nhọn (AB <AC) ,MB =MC. Trên tia AM lầy sao cho AM=MF. AH vuông góc với BC tại H, K là đường đối xứng của A qua H. O là giao điểm của BF và KC. Gọi I,E,D là lần lượt là tđ của OC,OF,BK. Giả sử IE =ID
TÍnh góc ACB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác AMB và tam giác NMC có :
AM = MN do N là trđ của AM (gt)
MB = MC do M là trđ của BC (Gt)
góc BMN = góc CMA (đối đỉnh)
=> tam giác AMB = tam giác NMC (c-g-c)
a) Xét \(\Delta ABM\) vuông tại M và \(\Delta ACM\) vuông tại M:
\(AMchung.\)
\(AB=AC(\Delta ABC\) cân tại A\().\)
\(\Rightarrow\) \(\Delta ABM=\) \(\Delta ACM\) (cạnh huyền - cạnh góc vuông).
b) Xét \(\Delta ABC\) cân tại A:
AM là đường cao (AM vuông góc với BC).
\(\Rightarrow\) AM là tia phân giác của góc BAC (T/c tam giác cân).
c) Xét \(\Delta ABC\) cân tại A:
AM là đường cao (AM vuông góc với BC).
\(\Rightarrow\) AM là trung tuyến (T/c tam giác cân).
\(\Rightarrow\) M là trung điểm của BC.
\(\Rightarrow BM=\dfrac{1}{2}BC.\)
Mà \(BM=\dfrac{1}{2}AB\left(gt\right).\)
\(\Rightarrow AB=BC.\)
Mà \(\Delta ABC\) cân tại A (gt).
\(\Rightarrow\Delta ABC\) đều.
Câu a thì em sử dụng trường hợp = nhau trong tam giác [c.g.c]
Câu b:
1. chứng minh cho PHAQ là HCN [tứ giác có 3 góc vuông]
2. Từ HCN PHQA => PH=AQ [MÀ PH=PE ->PE=AQ] , PA=HQ[mà HQ=QF -> QF=PA] rồi xét 2 tam giác PAE = QFA[c.g.c]
Hai tam giác bằng nhau => AE=AF mà A thuộc EF => A là trung điểm của EF
a) ,Xét △ABH và △CAK có:
AB = AC (gt)
\(\widehat{ABH}=\widehat{KAC}\)( cùng phụ với \(\widehat{BAK}\))
\(\Rightarrow\)△BAH = △ACK(ch-gn)
\(\Rightarrow\)BH= AK (cặp cạnh tương ứng)
b, Xét △ABC vuông cân tại A có AM là đường trung tuyến
\(\Rightarrow\)AM = MB = MC
Xét △MBH và △MAK có :
MB = AM (cmt)
BH = AK (△BAH = △ACK)
\(\widehat{HBM}=\widehat{KAM}\)(cùng phụ với \(\widehat{AEM}\))
\(\Rightarrow\)△MBH = △MAK (c.g.c)
c, Ta có : △MBH = △MAK
\(\Rightarrow\)MH = MK (Cặp cạnh tương ứng)
\(\Rightarrow\) △MHK cân ở M (1)
Có : △MBH = △MAK
\(\Rightarrow\widehat{BHM}=\widehat{AKM}\) (Cặp góc tương ứng)
Lại có : \(\widehat{MHK}+\widehat{BHM}=90^o\)
\(\Rightarrow\widehat{MHK}+\widehat{AKM}=90^o\)
\(\Rightarrow\widehat{HMK}=180^o-\left(\widehat{MHK}+\widehat{AKM}\right)\)
\(\Rightarrow\widehat{HMK}=180^o-90^o=90^o\)(2)
Từ (1) và (2) suy ra △MHK vuông cân tại M