1 Chứng tỏ pt sau nghiệm đúng với mọi x : x2 + 5x + 6 =(x + 3)(x + 2)
2 cho\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) Tính giá trị của biểu thức P= \(\frac{b.c}{a^2}+\frac{c.a}{b^2}+\frac{a.b}{c^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{x^2+4}{x^2}+\frac{4}{x+1}\left(\frac{1}{x}+1\right)\)
\(=\frac{x^2+4}{x^2}+\frac{4}{x+1}.\frac{x+1}{x}\)
\(=\frac{x^2+4}{x^2}+\frac{4}{x}\)
\(=\frac{x^2+4x+4}{x^2}\)
\(\left(\frac{x+2}{x}\right)^2\)
=>phép chia = 1 với mọi x # 0 và x#-1
b)Cm tương tự
Bài 1 :
Ta có : \(\frac{x^2+x+1}{x^2+1}=0\)
=> \(\frac{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}{x^2+1}=0\)
Ta thấy \(\left\{{}\begin{matrix}\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\\x^2+1>0\end{matrix}\right.\)
=> \(\frac{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}{x^2+1}>0\)
Vậy phương trình vô nghiệm .
Bài 3 :
a, ĐKXĐ : \(\left\{{}\begin{matrix}m-2\ne0\\m\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}m\ne2\\m\ne0\end{matrix}\right.\)
Ta có : \(A=\frac{m+1}{m-2}-\frac{1}{m}\)
=> \(A=\frac{\left(m+1\right)m}{\left(m-2\right)m}-\frac{m-2}{m\left(m-2\right)}\)
=> \(A=\frac{m^2+m-m+2}{\left(m-2\right)m}=\frac{m^2+2}{m\left(m-2\right)}\)
Ta có : \(B=\frac{m+2}{m-2}+\frac{1}{m}\)
=> \(B=\frac{\left(m+2\right)m}{\left(m-2\right)m}+\frac{m-2}{m\left(m-2\right)}\)
=> \(B=\frac{m^2+2m+m-2}{\left(m-2\right)m}=\frac{m^2+3m-2}{m\left(m-2\right)}\)
c, Thay A = 1 ta được phương trình :\(\frac{m^2+2}{m\left(m-2\right)}=1\)
=> \(m^2+2=m\left(m-2\right)\)
=> \(-2m=2\)
=> \(m=-1\) ( TM )
Vậy m có giá trị bằng 1 khi A = 1 .
b, - Để A = B thì : \(\frac{m^2+2}{m\left(m-2\right)}=\frac{m^2+3m-2}{m\left(m-2\right)}\)
=> \(m^2+2=m^2+3m-2\)
=> \(3m=4\)
=> \(m=\frac{4}{3}\)
Vậy với A = B thì m có giá trị là 4/3 .
d, Ta có : A + B = 0 .
=> \(\frac{m^2+2}{m\left(m-2\right)}+\frac{m^2+3m-2}{m\left(m-2\right)}=0\)
=> \(2m^2+3m=0\)
=> \(m\left(2m+3\right)\)=0
=> \(\left[{}\begin{matrix}m=0\\m=-\frac{3}{2}\end{matrix}\right.\)
Vậy m = 0 hoăc m = -3/2 khi A + B = 0 .
dự đoán của Thần thánh
\(\frac{ab}{a^2+b^2}=\frac{a^2}{2a^2}=\frac{1}{2}\)
\(VT=\frac{3}{2}+\frac{9}{4}=\frac{12}{8}+\frac{18}{8}=\frac{30}{8}=\frac{15}{4}\)
\(p=\frac{ab}{a^2+b^2}+....+\frac{ca}{c^2+a^2};A=\frac{1}{4}\left(\frac{1}{A}+\frac{1}{B}+\frac{1}{C}\right)\)
áp dụng BDT cô si ta có
\(\frac{ab}{a^2+b^2}+\frac{\left(a^2+b^2\right)}{\frac{4}{9}}\ge2\sqrt{\frac{ab}{\frac{4}{9}}}=\frac{2}{\frac{2}{3}}\sqrt{ab}=3\sqrt{ab}\)
tương tự với các BDT còn lại suy ra
\(p+\frac{9}{4}\left(2a^2+2b^2+2c^2\right)\ge3\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)
\(P+\frac{9}{2}\left(a^2+b^2+c^2\right)\ge3\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)
áp dụng BDT cô si ta có
\(a^2+\frac{1}{9}\ge2\sqrt{\frac{a^2}{9}}=\frac{2a}{3}\)
tương tự với b^2+c^2 ta được
\(a^2+b^2+c^2+\frac{1}{3}\ge\frac{2}{3}\left(a+b+c\right)=\frac{2}{3}\)
\(\Rightarrow a^2+b^2+c^2\ge\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\)
" thay 1/3 vào ta được
\(p+\frac{3}{2}\ge3\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)
áp dụng BDT cô si dạng " Rei " " luôn đúng với những bài ngược dấu "
\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\ge3\sqrt[3]{\sqrt{abc}}=3\sqrt[3]{abc}\)
mà \(a+b+c\ge3\sqrt[3]{abc}\)
thay a+b+c=1 vào ta được
\(P+\frac{3}{2}\ge3\Leftrightarrow P\ge\frac{6}{2}-\frac{3}{2}=\frac{3}{2}\) " 1 "
bây giờ tính nốt con \(A=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
áp dụng BDT \(\frac{1}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{1}{a+b+c}\)
\(A=\frac{9}{4}.\frac{1}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{9}{4}\left(\frac{1}{a+b+c}\right)\)
mà a+b+C=1 suy ra
\(A\ge\frac{9}{4}\) "2"
từ 1 và 2 suy ra
\(VT=P+A\ge\frac{3}{2}+\frac{9}{4}=\frac{12}{8}+\frac{18}{8}=\frac{30}{8}=\frac{15}{4}\)
" đúng với dự đoán của thần thánh "
Bài làm:
a) Tại x = 2 thì giá trị của B là:
\(B=-\frac{10}{2-4}=\frac{-10}{-2}=5\)
b) Ta có:
\(A=\frac{x+2}{x+5}+\frac{-5x-1}{x^2+6x+5}-\frac{1}{1+x}\)
\(A=\frac{x+2}{x+5}-\frac{5x+1}{\left(x+1\right)\left(x+5\right)}-\frac{1}{x+1}\)
\(A=\frac{\left(x+2\right)\left(x+1\right)-5x-1-\left(x+5\right)}{\left(x+1\right)\left(x+5\right)}\)
\(A=\frac{x^2+3x+2-5x-1-x-5}{\left(x+1\right)\left(x+5\right)}\)
\(A=\frac{x^2-3x-4}{\left(x+1\right)\left(x+5\right)}\)
\(A=\frac{\left(x+1\right)\left(x-4\right)}{\left(x+1\right)\left(x+5\right)}\)
\(A=\frac{x-4}{x+5}\)
c) Ta có: \(P=A.B=\frac{x-4}{x+5}\cdot\frac{-10}{x-4}=\frac{-10}{x+5}\)
Để \(-\frac{10}{x+5}\inℤ\Rightarrow\left(x+5\right)\inƯ\left(-10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
=> \(x\in\left\{-15;-10;-7;-6;-4;-3;0;5\right\}\)
a) \(B=\frac{-10}{x-4}\)( ĐKXĐ : \(x\ne4\))
Tại x = 2 ( tmđk ) thì \(B=\frac{-10}{2-4}=\frac{-10}{-2}=5\)
b) \(A=\frac{x+2}{x+5}+\frac{-5x-1}{x^2+6x+5}-\frac{1}{1+x}\)
ĐKXĐ : \(x\ne-5,x\ne-1\)
\(A=\frac{x+2}{x+5}-\frac{5x+1}{\left(x+1\right)\left(x+5\right)}-\frac{1}{x+1}\)
\(A=\frac{\left(x+2\right)\left(x+1\right)}{\left(x+1\right)\left(x+5\right)}-\frac{5x+1}{\left(x+1\right)\left(x+5\right)}-\frac{1\left(x+5\right)}{\left(x+1\right)\left(x+5\right)}\)
\(A=\frac{x^2+3x+2-5x-1-x-5}{\left(x+1\right)\left(x+5\right)}\)
\(A=\frac{x^2-3x-4}{\left(x+1\right)\left(x+5\right)}\)
\(A=\frac{\left(x+1\right)\left(x-4\right)}{\left(x+1\right)\left(x+5\right)}=\frac{x-4}{x+5}\)
c) \(P=A\cdot B=\frac{x-4}{x+5}\cdot\frac{-10}{x-4}=\frac{-10}{x+5}\)( ĐKXĐ : \(x\ne-5\))
Để P nguyên => \(\frac{-10}{x+5}\)nguyên
=> -10 chia hết cho x + 5
=> x + 5 thuộc Ư(-10) = { ±1 ; ±2 ; ±5 ; ±10 }
x+5 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
x | -4 | -6 | -3 | -7 | 0 | -10 | 5 | -15 |
Các giá trị của x đều tmđk
Vậy x = { -4 ; -6 ; -3 ; -7 ; 0 ; -10 ; 5 ; -15 }
Giải ra kĩ một chút . Xin cảm ơn