(3/4)x-9/16=0
Tìm x bt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{4}\times x-x-\frac{9}{16}=0\)
\(\Rightarrow\left(\frac{3}{4}-1\right)\times x=\frac{9}{16}\)
\(\Rightarrow-\frac{1}{4}\times x=\frac{9}{16}\)
\(\Rightarrow x=\frac{9}{16}:\left(-\frac{1}{4}\right)\Rightarrow x=\frac{9}{16}.\left(-4\right)\)
\(\Rightarrow x=-\frac{9}{4}\)
Vậy.............
`2sqrt{36x-36}-1/3sqrt{9x-9}-4sqrt{4x-4}+sqrt{x-1}=16`
`ĐK:x>=1`
`pt<=>2sqrt{36(x-1)}-1/3sqrt{9(x-1)}-4sqrt{4(x-1)}+sqrt{x-1}=16`
`<=>12sqrt{x-1}-sqrt{x-1}-8sqrt{x-1}+sqrt{x-1}=16`
`<=>4sqrt{x-1}=16`
`<=>sqrt{x-1}=4`
`<=>x-1=16`
`<=>x=17(tmđk)`
Vậy `S={17}`
\(x^2+2xy+y^2+6\left(x+y\right)+8=-y^2\)
\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+8\le0\)
\(\Leftrightarrow\left(x+y+2\right)\left(x+y+4\right)\le0\)
\(\Rightarrow-4\le x+y\le-2\)
\(\Rightarrow2016\le B\le2018\)
\(B_{min}=2016\) khi \(\left(x;y\right)=\left(-4;0\right)\)
\(B_{max}=2018\) khi \(\left(x;y\right)=\left(-2;0\right)\)
\(a,A=\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{3}{\sqrt{x}+2}-\frac{9\sqrt{x}-10}{x-4}\left(x\ge0;x\ne16\right)\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{9\sqrt{x}-10}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{3\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{9\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x+2\sqrt{x}+3\sqrt{x}-6-9\sqrt{x}+10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x-4\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\left(\sqrt{x}\right)^2-2.\sqrt{x}.2+2^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}-2}{\sqrt{x}+2}\)
Vây...
\(b,\)Ta có:\(x=4-2\sqrt{3}=\left(1-\sqrt{3}\right)^2\)
Thay \(x=\left(1-\sqrt{3}\right)^2\)vào A ta được:
\(A=\frac{\sqrt{\left(1-\sqrt{3}\right)^2}-2}{\sqrt{\left(1-\sqrt{3}\right)^2}+2}=\frac{\sqrt{3}-1-2}{\sqrt{3}-1+2}=\frac{\sqrt{3}-3}{\sqrt{3}-1}=\frac{-\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}=-\sqrt{3}\)
Bài 2:
a: Ta có: \(\left(x+2\right)\left(x-2\right)\left(x^2+4\right)\)
\(=\left(x^2-4\right)\left(x^2+4\right)\)
\(=x^4-16\)
b: Ta có:\(\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=x^3-x^2y+xy^2+x^2y-xy^2+y^3\)
\(=x^3+y^3\)
Bài 1:
Ta có: \(\left(x+4\right)\left(x^2-4x+16\right)-x\left(x+1\right)\left(x+3\right)+3x^2=0\)
\(\Leftrightarrow x^3+64-x\left(x^2+4x+3\right)+3x^2=0\)
\(\Leftrightarrow x^3+64-x^3-4x^2-3x+3x^2=0\)
\(\Leftrightarrow-x^2-3x+64=0\)
\(\Leftrightarrow x^2+3x-64=0\)
\(\text{Δ}=3^2-4\cdot1\cdot\left(-64\right)=265\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-3-\sqrt{265}}{2}\\x_2=\dfrac{-3+\sqrt{265}}{2}\end{matrix}\right.\)
\(\Rightarrow x\left(x-3\right)-\left(x-3\right)=0\\ \Rightarrow\left(x-1\right)\left(x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
\(\left(\frac{3}{4}\right)^x-\frac{9}{16}=0\)
\(\Rightarrow\left(\frac{3}{4}\right)^x=\frac{9}{16}=\left(\frac{3}{4}\right)^2\)
\(\Rightarrow x=2\)
Vậy x=2 thỏa mãn