K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2017

\(\frac{2x^2-4x+5}{x^2+1}=\frac{x^2+1+\left(x^2-4x+4\right)}{x^2+1}=\frac{x^2+1+\left(x-2\right)^2}{x^2+1}=1+\frac{\left(x-2\right)^2}{x^2+1}\ge1\forall x\)

NV
2 tháng 4 2023

\(A=\dfrac{x^2+2x+1}{x^2-4x+5}=\dfrac{\left(x+1\right)^2}{\left(x-2\right)^2+1}\)

Do \(\left\{{}\begin{matrix}\left(x+1\right)^2\ge0\\\left(x-2\right)^2+1>0\end{matrix}\right.\) ;\(\forall x\)

\(\Rightarrow A\ge0\) ;\(\forall x\)

\(A_{min}=0\) khi \(x=-1\)

26 tháng 7 2018

bài 1

a, \(A=\frac{1}{-x^2+2x-2}=\frac{1}{-\left(x^2-2x+1\right)-1}=\frac{1}{-\left(x-1\right)^2-1}\)

Vì \(-\left(x-1\right)^2\le0\Rightarrow-\left(x-1\right)^2-1\le-1\Rightarrow A=\frac{1}{-\left(x-1\right)^2-1}\ge\frac{1}{-1}=-1\)

Dấu "=" xảy ra khi x=1

Vậy Amin=-1 khi x=1

b, \(B=\frac{2}{-4x^2+8x-5}=\frac{2}{-4\left(x^2-2x+1\right)-1}=\frac{2}{-4\left(x-1\right)^2-1}\ge\frac{2}{-1}=-2\)

Dấu "=" xảy ra khi x=1

Vậy Bmin=-2 khi x=1

bài 2:

a, \(A=\frac{3}{2x^2+2x+3}=\frac{3}{2\left(x^2+x+\frac{1}{4}\right)+\frac{5}{2}}=\frac{3}{2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}}\)

Vì \(2\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}\ge\frac{5}{2}\Rightarrow A=\frac{3}{2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}}\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\)

dấu "=" xảy ra khi x=-1/2

Vậy Amax=6/5 khi x=-1/2

b, \(B=\frac{5}{3x^2+4x+15}=\frac{5}{3\left(x^2+\frac{4}{3}x+\frac{4}{9}\right)+\frac{41}{3}}=\frac{5}{3\left(x+\frac{2}{3}\right)^2+\frac{41}{3}}\le\frac{5}{\frac{41}{3}}=\frac{15}{41}\)

Dấu '=" xảy ra khi x=-2/3

Vậy Bmax=15/41 khi x=-2/3

13 tháng 2 2017

đặt x^2-7x=y=> \(y\ge-\frac{49}{4}\) (*)

\(A=y\left(y+12\right)=y^2+12y=\left(y+6\right)^2-36\ge-36\)

đẳng thức khi y=-6 thủa mãn đk (*)

Vậy: GTNN của A=-36 khí y=-6 =>\(\left[\begin{matrix}x=1\\x=6\end{matrix}\right.\)

21 tháng 3 2017

mình cũng kb

6 tháng 11 2015

\(A=\frac{\frac{1}{2}\left(2x^2+4x+9\right)-\frac{11}{2}}{2x^2+4x+9}=\frac{1}{2}-\frac{11}{2}.\frac{1}{2x^2+4x+9}\)

Nhận xét: 2x+ 4x + 9 = 2.(x+ 2x + 1) + 7 = 2.(x + 1)+ 7 > 7 với mọi x

=> \(\frac{1}{2x^2+4x+9}\le\frac{1}{7}\)=> \(-\frac{11}{2}.\frac{1}{2x^2+4x+9}\ge\frac{-11}{2}.\frac{1}{7}=-\frac{11}{14}\)

=> A > \(\frac{1}{2}-\frac{11}{14}=-\frac{2}{7}\) 

Vậy A nhỏ nhất bằng -2/7 khi  x+ 1 = 0  => x = -1

6 tháng 11 2015

bạn đưa ra là

x2+2x-1=2x2+4x+9

rồi chuyển vế là xong

​mình cũng không bik có đúng không

​mik mới học lớp 7 thôi