Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{x^2-2x-2}{x^2+x+1}=\frac{-2x^2-2x-2}{x^2+x+1}+\frac{3x^2}{x^2+x+1}=\frac{3x^2}{x^2+x+1}-2\)
Ta có:\(\frac{3x^2}{x^2+x+1}\ge0\Rightarrow\frac{3x^2}{x^2+x+1}-2\ge-2\)
=>Min A=-2 <=>3x2=0<=>x=0
\(\frac{27-12x}{x^2+9}=\frac{\left(x^2-12x+36\right)-\left(x^2+9\right)}{x^2+9}=\frac{\left(x-6\right)^2}{x^2+9}-1\)
ta thấy (x-6)2 >= 0 vs mọi x
x2 + 9 >0
=> (x-6)2 / x2 +9 -1 >= -1
Gợi ý làm phần a) , phần còn lại tương tự nha
\(A=\frac{x^2-2x-2}{x^2+x+1}\)
\(\Leftrightarrow
A\left(x^2+x+1\right)=x^2-2x-2\)
\(\Leftrightarrow
Ax^2+Ax+A-x^2+2x+2=0\)
\(\Leftrightarrow
x^2\left(A-1\right)+x\left(A+2\right)+A+2=0\)
Xét \(\Delta=\left(A+2\right)^2-4\left(A-1\right)\left(A+2\right)=A^2+4A+4-4\left(A^2+A-2\right)=-3A^2+12\ge0\)
\(\Leftrightarrow-2\le A\le2\)
Vậy MinA=-2 tại x=0, MaxA=2 tại x=-2
Chúc bạn học tốt
1.
Vì x>0 nên \(A=\frac{16x+4+\frac{1}{x}}{2}\)
Áp dụng bất đẳng thức Côsi cho 2 số dương
\(16x+\frac{1}{x}\ge2\sqrt{16x.\frac{1}{x}}=2.4=8\). Dấu "=" khi \(16x=\frac{1}{x}\Rightarrow x^2=\frac{1}{16}\Rightarrow x=\frac{1}{4}\)
\(A=\frac{16x+4+\frac{1}{x}}{2}\ge\frac{8+4}{2}=6\)
Vậy GTNN của A là 6 khi \(x=\frac{1}{4}\)
2.
\(B=\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}=\frac{10}{ab}\)
Ta có: \(10=a+b\ge2\sqrt{ab}\Rightarrow\sqrt{ab}\le5\Rightarrow ab\le25\). Dấu "=" khi a = b = 5
\(\Rightarrow B=\frac{10}{ab}\ge\frac{10}{25}=\frac{2}{5}\)
Vậy GTNN của B là \(\frac{2}{5}\)khi a = b = 5
\(E=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)
\(=2x-1+2x-3\)
\(=4x-4\)
Làm nốt
Đặt \(\hept{\begin{cases}2x=a\left(a>0\right)\\3y=b\left(b>0\right)\end{cases}}\)
\(\Rightarrow2x+3y=a+b\le2,x.y=\frac{ab}{6}\)
\(\Rightarrow P=\frac{4}{a^2+b^2}+\frac{9}{\frac{ab}{6}}=\frac{4}{a^2+b^2}\ne\frac{54}{ab}\)
Vì \(a>0,b>0\)
Nên áp dụng BĐT cô-si ta có:\(a+b\ge2\sqrt{ab}\)
Mà \(a+b\le2\Rightarrow2\sqrt{ab}\le2\Rightarrow\sqrt{ab}\le1\Rightarrow ab\le1\)
Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)với x > 0 , y > 0
\(\Rightarrow\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}\ge1\)
\(\Rightarrow\frac{4}{a^2+b^2}+\frac{4}{2ab}\ge4\)
\(\Rightarrow P=\frac{4}{a^2+b^2}+\frac{4}{2ab}+\frac{52}{ab}\)
\(P\ge4+52=56\)
\(\Rightarrow MinP=56\Leftrightarrow\hept{\begin{cases}a=b\\a+b=2\\a.b=1\end{cases}}\Leftrightarrow\hept{a=b=1\Leftrightarrow2x=3y=1\Leftrightarrow x=\frac{1}{2},y=\frac{1}{3}}\)
A = \(\frac{3x^2+\left(x^2-2x+1\right)}{x^2}=3+\frac{\left(x-1\right)^2}{x^2}\ge3\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy: A min = 1\(\Leftrightarrow x=1\)
Ta có \(\frac{9+4x^2+4x^3+x^4}{x^2+2x}=\frac{x^2\left(x^2+2\right)+2x\left(x^2+2x\right)+9}{x^2+2x}\)
= x2 + 2x + \(\frac{9}{x^2+2x}\)
= (\(\frac{3}{\sqrt{x^2+2x}}-\sqrt{x^2+2x}\))2 + 6 \(\ge6\)
\(\frac{9+x^2\left(x^2+2x\right)+2x\left(x^2+2x\right)}{x^2+2x}\)
Nha a viết láu táu nên thiếu mất x
\(A=\frac{\frac{1}{2}\left(2x^2+4x+9\right)-\frac{11}{2}}{2x^2+4x+9}=\frac{1}{2}-\frac{11}{2}.\frac{1}{2x^2+4x+9}\)
Nhận xét: 2x2 + 4x + 9 = 2.(x2 + 2x + 1) + 7 = 2.(x + 1)2 + 7 > 7 với mọi x
=> \(\frac{1}{2x^2+4x+9}\le\frac{1}{7}\)=> \(-\frac{11}{2}.\frac{1}{2x^2+4x+9}\ge\frac{-11}{2}.\frac{1}{7}=-\frac{11}{14}\)
=> A > \(\frac{1}{2}-\frac{11}{14}=-\frac{2}{7}\)
Vậy A nhỏ nhất bằng -2/7 khi x+ 1 = 0 => x = -1
bạn đưa ra là
x2+2x-1=2x2+4x+9
rồi chuyển vế là xong
mình cũng không bik có đúng không
mik mới học lớp 7 thôi