CMR : (a^2+b^2)/2 lớn hơn hoặc bằng ( a+b/2 )^2
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
DT
1
13 tháng 5 2021
Bài này `a=b=2=>ab=a+b` nhé.=>Phải là `ab>=a+b`
`ab>=a+b`
`<=>2ab>=2a+2b`
`<=>ab-2a+ab-2b>=0`
`<=>a(b-2)+b(a-2)>=0`
Mà `a>=2,b>=2`
`=>đpcm`
31 tháng 5 2018
Ta có: \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{9}{2\left(a+b+c\right)}\)
\(\Rightarrow\left(a^2+b^2+c^2\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{3}{2}\left(a+b+c\right)\)
LH
0
4 tháng 9 2017
ta áp dụng cô-si la ra
a^2+b^2+c^2 ≥ ab+ac+bc
̣̣(a - b)^2 ≥ 0 => a^2 + b^2 ≥ 2ab (1)
(b - c)^2 ≥ 0 => b^2 + c^2 ≥ 2bc (2)
(a - c)^2 ≥ 0 => a^2 + c^2 ≥ 2ac (3)
cộng (1) (2) (3) theo vế:
2(a^2 + b^2 + c^2) ≥ 2(ab+ac+bc)
=> a^2 + b^2 + c^2 ≥ ab+ac+bc
dấu = khi : a = b = c
NG
0
LT
0
Xét hiệu :
H = \(\frac{a^2+b^2}{2}-\left(\frac{a+b}{2}\right)^2=\frac{2.\left(a^2+b^2\right)}{4}-\frac{\left(a+b\right)^2}{4}\)
\(=\frac{2a^2+2b^2-a^2-b^2-2ab}{4}=\frac{\left(a-b\right)^2}{2^2}=\left(\frac{a-b}{2}\right)^2\ge0\)\(\forall\)a,b
Dấu " = " xảy ra khi \(\left(\frac{a-b}{2}\right)^2=0\Leftrightarrow a=b\)
\(\Rightarrow\frac{a^2+b^2}{2}\ge\left(\frac{a+b}{2}\right)^2\)
Vậy ...