(2x+1)(3y-2)=12
0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cả 2 cách đều đúng, nói như vậy phải gộp 2 cái lại
bạn làm theo cách một chúng ta dc:
\(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)
Đến đây ko phải chỉ có 6x=12 mà phải nghĩ đến nếu 2x+3y-1=0 thì x = bao nhiêu cũng đúng v~
Khi 2x+3y-1=0 thì nó thành cách 2 đấy
Bây giờ mới thấy bài này nhảm quá. Có nhiều x, y mà. Tìm bằng thánh. Gặp bài này nhiều rồi mà giờ mới để ý đó.
v~ thiệt
a.
\(\left\{{}\begin{matrix}\left(x-1\right)^2-\left(y+1\right)^2=0\\x+3y-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1-y-1\right)\left(x-1+y+1\right)=0\\x+3y-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y-2\right)\left(x+y\right)=0\\x+3y-5=0\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x-y-2=0\\x+3y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{4}\\y=\dfrac{3}{4}\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x+y=0\\x+3y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=\dfrac{5}{2}\end{matrix}\right.\)
b.
\(\left\{{}\begin{matrix}xy-2x-y+2=0\\3x+y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(y-2\right)-\left(y-2\right)=0\\3x+y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(y-2\right)=0\\3x+y=8\end{matrix}\right.\)
TH1:
\(\left\{{}\begin{matrix}x-1=0\\3x+y=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)
TH2:
\(\left\{{}\begin{matrix}y-2=0\\3x+y=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)
Câu 1:
Ta dễ dàng kiểm tra được \(C\notin\left(d_1\right):2x-3y+12=0\) nên hai đường thẳng \(\left(d_1\right),\left(d_2\right)\) không là đường cao và trung tuyến kẻ từ \(C\).
Không mất tính tổng quát giả sử chúng kẻ từ \(A\)
\(\Rightarrow\left\{{}\begin{matrix}A\in\left(d_1\right)\\A\in\left(d_2\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x_A-3y_A+12=0\\2x_A+3y_A=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x_A=-3\\y_A=2\end{matrix}\right.\Rightarrow A\left(-3;2\right)\)
Gọi trung điểm \(BC\) là \(M\) \(\Rightarrow M\in\left(d_2\right)\) \(\Rightarrow M\left(-\dfrac{3}{2}y;y\right)\)\(\Rightarrow\overrightarrow{CM}=\left(-\dfrac{3}{2}y-4;y-1\right)\).
VTPT của \(\left(d_1\right)\) là \(\overrightarrow{n}=\left(2;-3\right)\).
Do \(\left(d_1\right)\) vuông góc \(BC\) nên \(\overrightarrow{CM}=k\overrightarrow{n}\)
\(\Rightarrow\left\{{}\begin{matrix}-\dfrac{3}{2}y-4=2k\\y-1=-3k\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=-\dfrac{28}{5}\\k=\dfrac{11}{5}\end{matrix}\right.\Rightarrow M\left(\dfrac{42}{5};-\dfrac{28}{5}\right)\)
\(\Rightarrow B\left(\dfrac{64}{5};-\dfrac{61}{5}\right)\).
Câu 2:
\(\left\{{}\begin{matrix}B\in d_1\\B\in d_2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x+y-1=0\\2x+3y-6=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-3\\y=4\end{matrix}\right.\Rightarrow B\left(-3;4\right)\)
Gọi \(M\) là trung điểm \(AC\) \(\Rightarrow M\in d_2\Rightarrow M\left(x;2-\dfrac{2}{3}x\right)\Rightarrow\overrightarrow{AM}=\left(x-1;1-\dfrac{2}{3}x\right)\)
VTPT của \(d_1\) là \(\overrightarrow{n}=\left(1;1\right)\),
Do \(d_1\) vuông góc \(AC\Rightarrow\overrightarrow{AC}=k\overrightarrow{n}\)
\(\Rightarrow\left\{{}\begin{matrix}x-1=k\\1-\dfrac{2}{3}x=k\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{6}{5}\\k=\dfrac{1}{5}\end{matrix}\right.\Rightarrow M\left(\dfrac{6}{5};\dfrac{6}{5}\right)\)
\(\Rightarrow C\left(\dfrac{7}{5};\dfrac{7}{5}\right)\).
4 câu làm tương tự nhau, nhưng câu a chắc bạn ghi nhầm đề (hoặc đề sai). Do \(AB\perp CC'\) nhưng \(4.2+1.2\ne0\) là hoàn toàn vô lý
Mình làm câu b, 2 câu còn lại bạn làm tương tự
Gọi H là trực tâm tam giác \(\Rightarrow\) H là giao điểm BB' và CC'
Tọa độ H là nghiệm \(\left\{{}\begin{matrix}4x-3y+1=0\\7x+2y-22=0\end{matrix}\right.\) \(\Rightarrow H\left(\frac{64}{29};\frac{95}{29}\right)\)
B là giao điểm BC và BB' nên tọa độ B là nghiệm:
\(\left\{{}\begin{matrix}5x-3y+2=0\\4x-3y+1=0\end{matrix}\right.\) \(\Rightarrow B\left(-1;-1\right)\)
C là giao điểm BC và CC' nên tọa độ C là nghiệm:
\(\left\{{}\begin{matrix}5x-3y+2=0\\7x+2y-22=0\end{matrix}\right.\) \(\Rightarrow C\left(2;4\right)\)
Đường AA' đi qua H và vuông góc BC nên nhận \(\left(3;5\right)\) là 1 vtpt
Phương trình AA':
\(3\left(x-\frac{64}{29}\right)+5\left(x-\frac{95}{29}\right)=0\Leftrightarrow3x+5y-23=0\)
Đường thẳng AB qua B và vuông góc CC' nên nhận \(\left(2;-7\right)\) là 1 vtpt
Phương trình AB:
\(2\left(x+1\right)-7\left(y+1\right)=0\Leftrightarrow2x-7y-5=0\)
Đường thẳng AC qua C và vuông góc BB' nên nhận \(\left(3;4\right)\) là 1 vtpt
Phương trình AC:
\(3\left(x-2\right)+4\left(y-4\right)=0\Leftrightarrow3x+4y-22=0\)
9: \(\left\{{}\begin{matrix}3x-2=y\\2x+3y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-y=2\\2x+3y=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6x-2y=4\\6x+9y=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11y=-14\\3x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{14}{11}\\x=\dfrac{y+2}{3}=\dfrac{\dfrac{14}{11}+2}{3}=\dfrac{12}{11}\end{matrix}\right.\)
\(9,\Leftrightarrow\left\{{}\begin{matrix}3x-2=y\\2x+3\left(3x-2\right)=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-2=y\\11x=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{12}{11}\\y=\dfrac{14}{11}\end{matrix}\right.\)
\(10,\Leftrightarrow\left\{{}\begin{matrix}2x=2-3y\\2\left(2-3y\right)-y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=2-3y\\4-6y-y-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{14}\\y=\dfrac{3}{7}\end{matrix}\right.\)
2/3x - 3/2x = 5/12
=> ( 2/3 - 3/2 )x = 5/12
=> -5/6x = 5/12
=> x = 5/12 : -5/6
=> x = -1/2
( x + 1/2 ) . ( 2/3 - 2x ) = 0
=> x + 1/2 = 0 hoặc 2/3 - 2x = 0
=> x = -1/2 hoặc x = 1/3