Tìm \(x,y\in Z\)biết \(\left(x-3\right)^2+y^2=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : Tính nhanh
a) 16.(38−2)−38(16−1)16.(38−2)−38(16−1)
b) (−41).(59+2)+59(41−2)(−41).(59+2)+59(41−2)
Bài 2 :
Tìm các số x ; y ; x biết rằng :
x + y = 2 ; y + z = 3 ; z + x = -5
Bài 3 : Tìm x ; y ∈∈ Z biết rằng :
( y + 1 ) . xy - 1 ) = 3
Do \(\left|x+\frac{1}{2}\right|\ge0;\left|y-\frac{3}{4}\right|\ge0;\left|z-1\right|\ge0\)
\(\Rightarrow\left|x+\frac{1}{2}\right|+\left|y-\frac{3}{4}\right|+\left|z-1\right|\ge0\)
Dấu "=" xảy ra khi \(x=-\frac{1}{2};y=\frac{3}{4};z=1\)
a). Nhận xét rằng từng số hạng của tổng vế phải (VP) đều >=0 nên VP >= 0. Để dấu "=" xảy ra thì từng số hạng trong tổng VP đều bằng 0. Do đó ta có: x= 1/2; y=-3/2; z=-3/2.
b) Tương tự, VP>=0 để VP<=0 = VT chỉ xảy ra khi đạt dấu "=". Cho từng số hạng của VP =0, ta được: x=1; y=2/3; z=-1.
Ta có
\(\begin{cases}\left|x-\frac{1}{2}\right|\ge0\\\left|y+\frac{3}{2}\right|\ge0\\\left|x+y-z-\frac{1}{2}\right|\ge0\end{cases}\)
Maf \(\left|x-\frac{1}{2}\right|+\left|y+\frac{3}{2}\right|+\left|x+y-z-\frac{1}{2}\right|=0\)
\(\Rightarrow\begin{cases}x-\frac{1}{2}=0\\y+\frac{3}{2}=0\\x+y-z-\frac{1}{2}=0\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=-\frac{3}{2}\\x+y-z=\frac{1}{2}\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=-\frac{3}{2}\\\frac{1}{2}-\frac{3}{2}-z=\frac{1}{2}\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=-\frac{3}{2}\\-z=\frac{3}{2}\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=-\frac{3}{2}\\z=-\frac{3}{2}\end{cases}\)
a) \(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)
\(A=\frac{-3}{2^2}.\frac{-8}{3^2}.\frac{-15}{4^2}...\frac{-9999}{100^2}\)
\(A=-\left(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{9999}{100^2}\right)\) (vì A là tích của 99 thừa số âm nên kết quả là âm)
\(A=-\left(\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{99.101}{100.100}\right)\)
\(A=-\left(\frac{1.2.3...99}{2.3.4...100}.\frac{3.4.5...101}{2.3.4...100}\right)\)
\(A=-\left(\frac{1}{100}.\frac{101}{2}\right)=\frac{-101}{200}\)
b) 2x + 2y = 2x+y
=> 2x = 2x.2y - 2y
=> 2x = 2y.(2x - 1)
\(\Rightarrow2^x⋮2^x-1\)
Mà (2x; 2x - 1) = 1
\(\Rightarrow\begin{cases}2^x-1=1\\2^y=2^x\end{cases}\)\(\Rightarrow\begin{cases}2^x=2=2^1\\x=y\end{cases}\)=> x = y = 1
Vậy x = y = 1
\(\left|x-\frac{3}{4}\right|+\left|\frac{2}{5}-y\right|+\left|x+y+z\right|\ge0\)
Dấu "=" xảy ra khi \(x=\frac{3}{4};y=\frac{2}{5};z=-\frac{23}{20}\)
vì \(\left(x-3\right)^2\ge0\Rightarrow y^2\le1\)
Mà y^2 là số chính phương=> \(\orbr{\begin{cases}y^2=0\\y^2=1\end{cases}}\)
E tự thay vào và tính tiếp nhé