K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2019

Tìm GTLN:

\(A=-x^2+6x-15\)

\(=-\left(x^2-6x+15\right)\)

\(=-\left(x^2-2.x.3+9+6\right)\)

\(=-\left(x+3\right)^2-6\le0\forall x\)

Dấu = xảy ra khi: 

   \(x-3=0\Leftrightarrow x=3\)

Vậy Amax = - 6 tại x = 3

Tìm GTNN :

\(A=x^2-4x+7\)

\(=x^2+2.x.2+4+3\)

\(=\left(x+2\right)^2+3\ge0\forall x\)

Dấu = xảy ra khi:

   \(x+2=0\Leftrightarrow x=-2\)

Vậy Amin = 3 tại x = - 2

Các câu còn lại làm tương tự nhé... :)

2 tháng 7 2019

giải hết i

16 tháng 3 2018

a) Đặt \(A=10+2x-5x^2\)

\(-A=5x^2-2x-10\)

\(-5A=25x^2-10x-50\)

\(-5A=\left(25x^2-10x+1\right)-51\)

\(-5A=\left(5x-1\right)^2-51\)

Do \(\left(5x-1\right)^2\ge0\forall x\)

\(\Rightarrow-5A\ge-51\)

\(A\le\frac{51}{5}\)

Dấu "=" xảy ra khi : \(5x-1=0\Leftrightarrow x=\frac{1}{5}\)

Vậy Max A = \(\frac{51}{5}\Leftrightarrow x=\frac{1}{5}\)

b) Đặt \(B=x^2-6x+10\)

\(B=\left(x^2-6x+9\right)+1\)

\(B=\left(x-3\right)^2+1\)

Mà \(\left(x-3\right)^2\ge0\forall x\)

\(B\ge1\)

Dấu "=" xảy ra khi :

\(x-3=0\Leftrightarrow x=3\)

Vậy Min B \(=1\Leftrightarrow x=3\)

Tìm GTLN - GTNN của các biểu thức ?* bài 1: Tìm GTNN: a) A= (x - 5)² + (x² - 10x)² - 24 b) B= (x - 7)² + (x + 5)² - 3 c) C= 5x² - 6x +1 d) D= 16x^4 + 8x² - 9 e) A= (x + 1)(x - 2)(x - 3)(x - 6) f) B= (x - 2)(x - 4)(x² - 6x + 6) g) C= x^4 - 8x³ + 24x² - 8x + 25 h) D= x^4 + 2x³ + 2x² + 2x - 2 i) A= x² + 4xy + 4y² - 6x – 12y +4 k) B= 10x² + 6xy + 9y² - 12x +15 l) C= 5x² - 4xy + 2y² - 8x – 16y +83 m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9 *...
Đọc tiếp

Tìm GTLN - GTNN của các biểu thức ?

* bài 1: Tìm GTNN: 
a) A= (x - 5)² + (x² - 10x)² - 24 
b) B= (x - 7)² + (x + 5)² - 3 
c) C= 5x² - 6x +1 
d) D= 16x^4 + 8x² - 9 

e) A= (x + 1)(x - 2)(x - 3)(x - 6) 
f) B= (x - 2)(x - 4)(x² - 6x + 6) 
g) C= x^4 - 8x³ + 24x² - 8x + 25 
h) D= x^4 + 2x³ + 2x² + 2x - 2 

i) A= x² + 4xy + 4y² - 6x – 12y +4 
k) B= 10x² + 6xy + 9y² - 12x +15 
l) C= 5x² - 4xy + 2y² - 8x – 16y +83 

m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9 

* Bài 2: Tìm GTLN: 
a) M= -7x² + 4x -12 
b) N= -16x² - 3x +14 

c) M= -x^4 + 4x³ - 7x² + 12x -5 
d) N= -(x² + x – 2) (x² +9x+18) +27 

* Bài 3: 
1) Cho x - 3y = 1. Tìm GTNN của M= x² + 4y² 
2) Cho 4x - y = 5. Tìm GTNN của 3x²+2y² 
3) Cho a + 2b = 2. Tìm GTNN của a³ + 8b³ 

* Bài 4: Tìm GTLN và GTNN của các biểu thức: 
1) A = (3 - 4x)/(x² + 1) 
2) B= (8x + 3)/(4x² + 1) 
3) C= (2x+1)/(x²+2)

0
28 tháng 2 2021

 4-3=2( dân chơi mới hiểu)

22 tháng 6 2021

Chắc là viết thiếu số "1" đấy, sợ lớp 11 còn chưa làm được cơ

 

27 tháng 11 2016

a) ta có A = (2x-1)2+ ( x+2)= 4x2- 4x +1 +x+2= 4x2 -3x +3 = 4x2-2*2x* \(\frac{3}{4}\)+ \(\frac{9}{16}\)+ \(\frac{39}{16}\)

= (2x-\(\frac{3}{4}\))2+ \(\frac{39}{16}\)

=> (2x-\(\frac{3}{4}\))2>=0

=> A >= \(\frac{39}{16}\)

dấu = sảy ra khi x=\(\frac{3}{2}\)

vậy A(min) = \(\frac{39}{16}\) khi x=\(\frac{3}{2}\)

 

b) lm tương tự B(min)= -\(\frac{25}{4}\) khi x= \(\frac{5}{2}\)

c) đặt dấu trừ ra ngoài vậy C(max)=0 khi x=2

 

2 tháng 7 2021

2) \(P=\frac{4}{2x^2+2xy+y^2+5x+20}=\frac{4}{\left(x^2+2xy+y^2\right)+\left(x^2+5x+\frac{25}{4}\right)+\frac{75}{4}}\)

\(=\frac{4}{\left(x+y\right)^2+\left(x+\frac{5}{2}\right)^2+\frac{75}{4}}\)

Để P đạt GTLN 

=> Mẫu thức đạt GTNN

mà \(\left(x+y\right)^2+\left(x+\frac{5}{2}\right)^2+\frac{75}{4}\ge\frac{75}{4}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y=0\\x+\frac{5}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{5}{2}\\y=\frac{5}{2}\end{cases}}\)

Thay x = -5/2 và y = 5/2 vào P 

Khi đó P = \(\frac{4}{\left(-\frac{5}{2}+\frac{5}{2}\right)^2+\left(-\frac{5}{2}+\frac{5}{2}\right)^2+\frac{75}{4}}=\frac{4}{\frac{75}{4}}=\frac{16}{75}\)

Vậy Max P = 16/75 <=> x = -5/2 ; y = 5/2

2 tháng 7 2021

1) Ta có P = x2 + 2xy + 3y2 + 5y + 10

= (x2 + 2xy + y2) + (2y2 + 5y + 10) 

\(\left(x+y\right)^2+2\left(y^2+\frac{5}{2}y+5\right)=\left(x+y\right)^2+2\left(y^2+\frac{5}{2}y+\frac{25}{16}+\frac{55}{16}\right)\)

\(\left(x+y\right)^2+2\left(y+\frac{5}{4}\right)^2+\frac{55}{8}\ge\frac{55}{8}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y=0\\y+\frac{5}{4}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{4}\\y=-\frac{5}{4}\end{cases}}\)

Vạy Min P = 55/8 <=> x = 5/4 ; y = -5/4 

24 tháng 6 2017

Mk chỉ làm hai bài đầu gợi ý thôi chứ mk cũng ko đủ TG

a)\(A=x^2-6x+15\)

\(\Leftrightarrow A=x^2-6x+9+6\)

\(\Leftrightarrow A=\left(x-3\right)^2+6\)

            Vì \(\left(x-3\right)^2\ge0\)\(\Rightarrow\)\(\left(x-3\right)^2+6\ge6\)

Dấu = xảy ra khi x - 3 = 0 ; x = 3

       Vậy Min A = 6 khi x=3

b)\(B=x^2+4x\)

\(\Leftrightarrow B=x^2+4x+4-4\)

\(\Leftrightarrow B=\left(x+2\right)^2-4\)

          Vì \(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2-4\ge-4\)\

     Dấu = xảy ra khi x + 2 = 0 ; x = -2

Vậy Min B = -4 khi x =-2