Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x
a) \(\left(x+1\right)\left(x+2\right)-x^2-x=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)-x\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+2-x\right)=0\)
\(\Leftrightarrow2\left(x+1\right)=0\)
\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
b) \(2x^2+5x-3=0\)
\(\Leftrightarrow2x^2+6x-x-3=0\)
\(\Leftrightarrow2x\left(x+3\right)-\left(x+3\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{1}{2}\\x=-3\end{array}\right.\)
a/ \(x+4y=1\Rightarrow x=1-4y\)
\(A=x^2+4y^2=\left(1-4y\right)^2+4y^2=20y^2-8y+1\)
\(A=20\left(y^2-2.\frac{1}{5}y+\frac{1}{25}\right)+\frac{1}{5}=20\left(y-\frac{1}{5}\right)^2+\frac{1}{5}\ge\frac{1}{5}\)
\(\Rightarrow A_{min}=\frac{1}{5}\) khi \(\left\{{}\begin{matrix}y=\frac{1}{5}\\x=1-4y=\frac{1}{5}\end{matrix}\right.\)
b/
\(B=\frac{2x^2+5x+8}{x}=2x+\frac{8}{x}+5\ge2\sqrt{2x.\frac{8}{x}}+5=13\)
\(\Rightarrow B_{min}=13\) khi \(x=2\)
1. a . 3x2 - 6x = 0
\(\Leftrightarrow3x\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}3x=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
b. x3 - 13x = 0
\(\Leftrightarrow x\left(x^2-13\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-13=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{13}\end{cases}}\)
c. 5x ( x - 2001 ) - x + 2001 = 0
<=> 5x ( x - 2001 ) - ( x - 2001 ) = 0
\(\Leftrightarrow\left(5x-1\right)\left(x-2001\right)=0\Leftrightarrow\orbr{\begin{cases}5x-1=0\\x-2001=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=2001\end{cases}}\)
Bài 1: \(A=x^2-2x+3\)
\(=x^2-2x+1+2\)
\(=\left(x-1\right)^2+2\ge2\forall x\)
Đẳng thức xảy ra khi \(\left(x-1\right)^2=0\Rightarrow x=1\)
Bài 2:
\(2x^2+4x+11=2x^2+4x+2+9\)
\(=2\left(x^2+2x+1\right)+9\)
\(=2\left(x+1\right)^2+9\ge9>0\forall x\)
ta có:
2x2-5x+8=(x2-4x+4)+(x2-x+1/4)+15/4=(x-2)2+(x-1/2)2+15/4>0
Viết B dưới dạng \(8x+2+\frac{1}{2x}\). Hai số \(8x\) và \(\frac{1}{2x}\) là hai số dương , có tích không đổi ( bằng 4 ) nên tổng của chúng nhỏ nhất khi và chỉ khi :
\(8x=\frac{1}{2x}\Leftrightarrow16x^2=1\Leftrightarrow x=\frac{1}{4}\left(x>0\right)\)
Vậy \(Min_B=\frac{1+1+1}{\frac{1}{2}}=6\Leftrightarrow x=\frac{1}{4}.\)