K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2017

=> x^3 = -4 . 54 = -216 = (-6)^3

=> x=-6

9 tháng 4 2020

Xin lỗi mình làm hơi tắt nha !!!Còn 1 cách nữa ,nếu bạn muốn thì nói với mình nha !!

Ta có : \(\frac{x-1}{59}+\frac{x-2}{58}+\frac{x-3}{57}=\frac{x-4}{56}+\frac{x-5}{55}+\frac{x-6}{54}\)

\(\Leftrightarrow\frac{x}{59}+\frac{x}{58}+\frac{x}{57}-\frac{x}{56}-\frac{x}{55}-\frac{x}{54}=\frac{1}{59}+\frac{2}{58}+\frac{3}{57}-\frac{4}{56}-\frac{5}{55}-\frac{6}{54}\)

<=> x = 60 

Vậy x = 60

9 tháng 4 2020

Bạn kiểm tra lại đề nhé. Chỗ

\(.....=\frac{x-4}{56}+\frac{x-5}{56}+\frac{x-6}{54}\)

19 tháng 10 2019

a, \(\frac{x}{4}=\frac{4}{x}\)
=> x.x = 4.4
=> x2  = 16
=> x= 42
=> x   = 4
Vậy x = 4
b,Sửa đề nhé: \(\frac{x}{4}=\frac{y}{5}\)
 Áp dụng tính chất DTSBN:
\(\frac{x}{4}=\frac{y}{5}=\frac{x+y}{4+5}=\frac{54}{9}=6\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{4}=6\Rightarrow x=6.4=24\\\frac{y}{5}=6\Rightarrow y=6.5=30\end{cases}}\)
Vậy x = 24, y = 30

AH
Akai Haruma
Giáo viên
31 tháng 12 2019

Lời giải:
ĐK: $x\neq -1; x\neq -4$

PT \(\Leftrightarrow \frac{3}{x^2-x+1}-\frac{27}{x^2+5x+4}+\frac{11}{x^2+x+2}-\frac{27}{x^2+5x+4}=0\)

\(\Leftrightarrow \frac{3(x^2+5x+4)-27(x^2-x+1)}{(x^2-x+1)(x^2+5x+4)}+\frac{11(x^2+5x+4)-27(x^2+x+2)}{(x^2+x+2)(x^2+5x+4)}=0\)

\(\Leftrightarrow \frac{3(-8x^2+14x-5)}{(x^2-x+1)(x^2+5x+4)}+\frac{2(-8x^2+14x-5)}{(x^2+x+2)(x^2+5x+4)}=0\)

\(\Leftrightarrow \frac{-8x^2+14x-5}{x^2+5x+4}\left(\frac{3}{x^2-x+1}+\frac{2}{x^2+x+2}\right)=0\)

Dễ thấy biểu thức trong ngoặc lớn luôn lớn hơn $0$ với mọi $x\neq -1; x\neq -4$

Do đó \(\frac{-8x^2+14x-5}{x^2+5x+4}=0\Rightarrow -8x^2+14x-5=0\)

\(\Rightarrow x=\frac{1}{2}\) hoặc $x=\frac{5}{4}$ (đều thỏa mãn)

Vậy........

AH
Akai Haruma
Giáo viên
23 tháng 12 2019

Lời giải:
ĐK: $x\neq -1; x\neq -4$

PT \(\Leftrightarrow \frac{3}{x^2-x+1}-\frac{27}{x^2+5x+4}+\frac{11}{x^2+x+2}-\frac{27}{x^2+5x+4}=0\)

\(\Leftrightarrow \frac{3(x^2+5x+4)-27(x^2-x+1)}{(x^2-x+1)(x^2+5x+4)}+\frac{11(x^2+5x+4)-27(x^2+x+2)}{(x^2+x+2)(x^2+5x+4)}=0\)

\(\Leftrightarrow \frac{3(-8x^2+14x-5)}{(x^2-x+1)(x^2+5x+4)}+\frac{2(-8x^2+14x-5)}{(x^2+x+2)(x^2+5x+4)}=0\)

\(\Leftrightarrow \frac{-8x^2+14x-5}{x^2+5x+4}\left(\frac{3}{x^2-x+1}+\frac{2}{x^2+x+2}\right)=0\)

Dễ thấy biểu thức trong ngoặc lớn luôn lớn hơn $0$ với mọi $x\neq -1; x\neq -4$

Do đó \(\frac{-8x^2+14x-5}{x^2+5x+4}=0\Rightarrow -8x^2+14x-5=0\)

\(\Rightarrow x=\frac{1}{2}\) hoặc $x=\frac{5}{4}$ (đều thỏa mãn)

Vậy........

1 tháng 3 2017

a) \(\frac{x+1}{94}+\frac{x+2}{93}+\frac{x+3}{92}=\frac{x+4}{91}+\frac{x+5}{90}+\frac{x+6}{89}\)

\(\Leftrightarrow\left(\frac{x+1}{94}+1\right)+\left(\frac{x+2}{93}+1\right)+\left(\frac{x+3}{92}+1\right)=\left(\frac{x+4}{91}+1\right)+\left(\frac{x+5}{90}+1\right)+\left(\frac{x+6}{89}+1\right)\)

\(\Leftrightarrow\frac{x+95}{94}+\frac{x+95}{93}+\frac{x+95}{92}-\frac{x+95}{91}-\frac{x+95}{90}-\frac{x+95}{89}=0\)

\(\Leftrightarrow\) \(\left(x+95\right)\left(\frac{1}{94}+\frac{1}{93}+\frac{1}{92}-\frac{1}{91}-\frac{1}{90}-\frac{1}{89}\right)=0\)

\(\frac{1}{94}+\frac{1}{93}+\frac{1}{92}-\frac{1}{91}-\frac{1}{90}-\frac{1}{89}\ne0\)

\(\Rightarrow x+95=0\)

\(\Leftrightarrow x=-95\)

Vậy phương trình có một nghiệm x = -95

b) \(\frac{x-1}{59}+\frac{x-2}{58}+\frac{x-3}{57}=\frac{x-4}{56}+\frac{x-5}{55}+\frac{x-6}{54}\)

\(\Leftrightarrow\left(\frac{x-1}{59}-1\right)+\left(\frac{x-2}{58}-1\right)+\left(\frac{x-3}{57}-1\right)=\left(\frac{x-4}{56}-1\right)+\left(\frac{x-5}{55}-1\right)+\left(\frac{x-6}{54}-1\right)\)

\(\Leftrightarrow\frac{x-60}{59}+\frac{x-60}{58}+\frac{x-60}{57}-\frac{x-60}{56}-\frac{x-60}{55}-\frac{x-60}{54}=0\)

\(\Leftrightarrow\left(x-60\right)\left(\frac{1}{59}+\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}-\frac{1}{54}\right)=0\)

\(\frac{1}{59}+\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}-\frac{1}{54}\ne0\)

\(\Rightarrow x-60=0\)

\(\Leftrightarrow x=60\)

Vậy phương trình có một nghiệm x = 60

1 tháng 3 2017

a) \(\frac{x+1}{94}+\frac{x+2}{93}+\frac{x+3}{92}=\frac{x+4}{91}+\frac{x+5}{90}+\frac{x+6}{89}\)

\(\Rightarrow\left(\frac{x+1}{94}+1\right)+\left(\frac{x+2}{93}+1\right)+\left(\frac{x+3}{92}+1\right)=\left(\frac{x+4}{91}+1\right)+\left(\frac{x+5}{90}+1\right)+\left(\frac{x+6}{89}+1\right)\)

\(\Rightarrow\frac{x+95}{94}+\frac{x+95}{93}+\frac{x+95}{92}=\frac{x+95}{91}+\frac{x+95}{90}+\frac{x+95}{89}\)

\(\Rightarrow\frac{x+95}{94}+\frac{x+95}{93}+\frac{x+95}{92}-\frac{x+95}{91}-\frac{x+95}{90}-\frac{x+95}{89}=0\)

\(\Rightarrow\left(x+95\right)\left(\frac{1}{94}+\frac{1}{93}+\frac{1}{92}-\frac{1}{91}-\frac{1}{90}-\frac{1}{89}\right)=0\)

\(\frac{1}{94}+\frac{1}{93}+\frac{1}{92}-\frac{1}{91}-\frac{1}{90}-\frac{1}{89}\ne0\)

\(\Rightarrow x+95=0\)

\(\Rightarrow x=-95\)

Vậy x = -95

b) \(\frac{x-1}{59}+\frac{x-2}{58}+\frac{x-3}{57}=\frac{x-4}{56}+\frac{x-5}{55}+\frac{x-6}{54}\)

\(\Rightarrow\left(\frac{x-1}{59}-1\right)+\left(\frac{x-2}{58}-1\right)+\left(\frac{x-3}{57}-1\right)=\left(\frac{x-4}{56}-1\right)+\left(\frac{x-5}{55}-1\right)+\left(\frac{x-6}{54}-1\right)\)

\(\Rightarrow\frac{x-60}{59}+\frac{x-60}{58}+\frac{x-60}{57}-\frac{x-60}{56}-\frac{x-5}{55}-\frac{x-6}{54}=0\)

\(\Rightarrow\left(x-60\right)\left(\frac{1}{59}+\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}-\frac{1}{54}\right)=0\)

\(\frac{1}{59}+\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}-\frac{1}{54}\ne0\)

\(\Rightarrow x-60=0\)

\(\Rightarrow x=60\)

Vậy x = 60

14 tháng 1 2015

(x -1)/59 -1 +(x-2)/58 -1 +(x-3)/57 -1 = (x-3)/56 -1 +(x-4)/55 -1 +(x-5)/54 -1

<=> (x-60)/59 +(x-60)/58 + (X-60)/57 -(x-60)/56 - (X-60)/55 -(X-60)/54 =0

<=> (x-60).(1/59 +1/58 +1/57 -1/56 -1/55 - 1/54)=0

vì 1/59 +1/58 +1/57 -1/56 -1/55 -1/54  <0

nên x-60 =0 <=> x=60

14 tháng 1 2015

đề bài của bạn bi sai vì vế trái không thể bằng vế phải nếu đề đúng thì phải là :

(x-1)/59 +(x-2)/58 +(x-3)/57 =(x-4)/56 +(x-5)/55 +(x-6)/54

khí đó bạn giải cách như trên ,chúc bạn học toán tốt

 

 

9 tháng 7 2019

\(a,\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

\(\frac{x}{10}=2\Rightarrow x=10.2=20\)

\(\frac{y}{6}=2\Rightarrow y=2.6=12\)

\(\frac{z}{21}=2\Rightarrow z=21.2=42\)

\(d,\frac{x}{2}=\frac{y}{3}=k\)\(\Rightarrow x=2k;y=3k\)

\(\Rightarrow ab=2k.3k=6k^2=54\)

\(\Rightarrow k^2=9\Leftrightarrow k=3\)

\(\frac{x}{2}=3\Rightarrow x=6\)

\(\frac{y}{3}=3\Rightarrow y=9\)

9 tháng 7 2019

a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\)   =>  \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)

Vậy x = 20; y = 12; z = 42

b) Ta có: \(\frac{x}{3}=\frac{y}{4}\) => \(\frac{x}{15}=\frac{y}{20}\)

          \(\frac{y}{5}=\frac{z}{7}\)  => \(\frac{y}{20}=\frac{z}{28}\)

=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)=> \(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{125}{62}=\frac{125}{62}\)

=> \(\hept{\begin{cases}\frac{x}{15}=\frac{125}{62}\\\frac{y}{20}=\frac{125}{62}\\\frac{z}{28}=\frac{125}{62}\end{cases}}\)  =>  \(\hept{\begin{cases}x=\frac{125}{62}.15=\frac{1875}{62}\\y=\frac{125}{62}.20=\frac{1250}{31}\\z=\frac{125}{62}.28=\frac{1750}{31}\end{cases}}\)

Vậy ...

7 tháng 8 2016

\(\Rightarrow\frac{2x}{10}=\frac{3y}{9}=\frac{4z}{8}\)

Áp dụng tc của dãy tỉ số bằng nhau Ta có

\(\frac{2x}{10}=\frac{3y}{9}=\frac{4z}{8}=\frac{2x+3y+4z}{10+9+8}=\frac{54}{27}=2\)

\(\Rightarrow\begin{cases}x=10\\y=6\\z=4\end{cases}\)

7 tháng 8 2016

Áp dụng tính chất của dãy tí số bằng nhau ta có:

\(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}=\frac{2x+3y+4z}{2\cdot5+3\cdot3+4\cdot2}=\frac{54}{27}=2\)

=> \(\frac{x}{5}=2\Rightarrow x=10\)

     \(\frac{y}{3}=2\Rightarrow y=6\)

     \(\frac{z}{2}=2\Rightarrow z=4\)

24 tháng 9 2016

Bài 2

48 : 6 = 8

6 x 4 = 24

54 : 6 = 9

Bài 3

x x 6 = 54

x = 54 : 6

x = 9

BÀI 1;4: tương tự nhé