K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2017

\(\frac{2\frac{1}{2}x-1}{\frac{2}{3}}=\frac{\frac{-2}{3}}{1-2\frac{1}{2}x}\)         ĐKXĐ \(x\ne\frac{2}{5}\)

\(\Leftrightarrow\)\(\frac{\frac{5}{2}x-1}{\frac{2}{3}}=\frac{\frac{2}{3}}{\frac{5}{2}x-1}\)\(\Leftrightarrow\)\(\left(\frac{5}{2}x-1\right)^2=\frac{4}{9}\)\(\Leftrightarrow\)\(\frac{25}{4}x^2-5x+1=\frac{4}{9}\)

\(\Leftrightarrow\)\(\frac{25}{4}x^2-5x+\frac{5}{9}=0\)\(\Leftrightarrow\)\(\frac{25}{4}x^2-\frac{25}{6}x-\frac{5}{6}x+\frac{5}{9}=0\)

\(\Leftrightarrow\)\(\left(\frac{25}{4}x^2-\frac{25}{6}x\right)-\left(\frac{5}{6}x-\frac{5}{9}\right)=0\)\(\Leftrightarrow\)\(\frac{25}{2}x\left(\frac{1}{2}x-\frac{1}{3}\right)-\frac{5}{3}\left(\frac{1}{2}x-\frac{1}{3}\right)=0\)

\(\Leftrightarrow\)\(\left(\frac{25}{2}x-\frac{5}{3}\right)\left(\frac{1}{2}x-\frac{1}{3}\right)=0\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{2}{15}\end{cases}}\)

7 tháng 12 2017

Tích chéo ta có:

\(-(2\frac{1}{2}x-1) ^2=-(\frac{2}{3})^2 \)

<=>\(2\frac{1}{2}x -1=\frac{2}{3} \)

<=>\(2\frac{1}{2}x =\frac{5}{3} \)

<=>\(\frac{5}{2}x=\frac{5}{3} \)

<=>\(x=\frac{5}{3}:\frac{5}{2} \)

<=>\(x=\frac{2}{3} \)

7 tháng 12 2017

bạn giải thích rõ chỗ :\(\left(2\dfrac{1}{2}x-1\right)\times\left(1-2\dfrac{1}{2}x\right)=-\left(2\dfrac{1}{2}x-1\right)^2\)hộ mik với

27 tháng 4 2018

Áp dụng BĐT :

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) ≥ 9

Trong đó : a = xy ; b = yz ; c = xz

⇒ ( xy + yz + xz )\(\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)\) ≥ 9 ( * )

Áp dụng BĐT cô - si :

x2 + y2 ≥ 2xy ( x > 0 ; y > 0) ( 1 )

y2 + z2 ≥ 2yz ( y > 0 ; z > 0 ) ( 2)

z2 + x2 ≥ 2xz ( z >0 ; x > 0) ( 3)

Cộng từng vế của ( 1 ; 2 ; 3) ⇒ x2 + y2 + z2 ≥ xy + yz + xz ( **)

Từ ( * ; **)

⇒(x2 + y2 + z2).A ≥ ( xy + yz + xz). A ≥ 9

⇒ 3A ≥ 9

⇒ A ≥ 3

⇒ AMIN = 3 ⇔ x = y = z

27 tháng 4 2018

thanks nha

14 tháng 7 2023

Ta đặt

  \(A=\dfrac{7}{1\times2}+\dfrac{7}{2\times3}+...+\dfrac{7}{99\times100}\)

\(\dfrac{1}{7}\times A=\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+....+\dfrac{1}{99\times100}\)

\(\dfrac{1}{7}\times A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\dfrac{1}{7}\times A=1-\dfrac{1}{100}\)

\(\dfrac{1}{7}\times A=\dfrac{99}{100}\)

\(A=\dfrac{99}{100}\div\dfrac{1}{7}\)

\(A=\dfrac{693}{100}\)

14 tháng 7 2023

= 7.(1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100)

= 7.(1 - 1/100)

= 7 . 99/100

= 693/100

3 tháng 5 2023

Đề yêu cầu gì em?

AH
Akai Haruma
Giáo viên
3 tháng 5 2023

Lời giải:

Điều kiện: $x\neq 0; -1$

$\frac{x+3}{x+1}-2=\frac{1-x}{x}$
$1+\frac{2}{x+1}-2=\frac{1}{x}-1$

$\frac{2}{x+1}-1=\frac{1}{x}-1$

$\frac{2}{x+1}=\frac{1}{x}$

$\Rightarrow 2x=x+1$
$\Leftrightarrow x=1$ (thỏa mãn)

6 tháng 4 2017

tính M hay chứng minh M ko là stn hay đầu bài là j vậy bn????oho

14 tháng 7 2017

chek la tinh M day ban

=>\(D=7\left(\dfrac{5}{42\cdot37}+\dfrac{1}{42\cdot43}+\dfrac{6}{43\cdot49}+\dfrac{10}{49\cdot59}\right)\)

\(=7\left(\dfrac{1}{37}-\dfrac{1}{42}+\dfrac{1}{42}-\dfrac{1}{43}+\dfrac{1}{43}-\dfrac{1}{49}+\dfrac{1}{49}-\dfrac{1}{59}\right)\)

=7(1/37-1/59)

=7*22/2183

\(E=5\left(\dfrac{8}{37\cdot45}+\dfrac{2}{45\cdot47}+\dfrac{3}{47\cdot50}+\dfrac{9}{50\cdot59}\right)\)

\(=5\left(\dfrac{1}{37}-\dfrac{1}{45}+\dfrac{1}{45}-\dfrac{1}{47}+...+\dfrac{1}{50}-\dfrac{1}{59}\right)\)

=5(1/37-1/59)

=>D/E=7/5

13 tháng 7 2023

ờ bn ơi

20 tháng 12 2022

a: \(=\dfrac{x^2-x+x+1+2x}{\left(x-1\right)\left(x+1\right)}=\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{x-1}\)

b: \(=\dfrac{x^2+2x-4x-2x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2-4x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x-2}{x+2}\)

c: \(=\dfrac{2x^2-3x-9-x^2+3x+x^2+6x+9}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{2x^2+6x}{\left(x-3\right)\left(x+3\right)}=\dfrac{2x}{x-3}\)

26 tháng 8 2021

\(1+\dfrac{1}{2}.\dfrac{3.2}{2}+\dfrac{1}{3}.\dfrac{4.3}{2}+...+\dfrac{1}{500}.\dfrac{501.500}{2}\)

\(=\dfrac{2}{2}+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{501}{2}\)

\(=\dfrac{2+3+4+...+501}{2}\)

\(=\dfrac{\left(501-2+1\right).\left(501+2\right)}{4}\)

\(=\dfrac{\left(501-2+1\right).\left(501+2\right)}{4}=62875\)

15 tháng 12 2022

a)

\(\left|x-2\right|-\dfrac{3}{5}=\dfrac{1}{2}\\ \left|x-2\right|=\dfrac{1}{2}+\dfrac{3}{5}\\ \left|x-2\right|=\dfrac{11}{10}\\ =>\left[{}\begin{matrix}x-2=\dfrac{11}{10}\\x-2=-\dfrac{11}{10}\end{matrix}\right.\left[{}\begin{matrix}x=\dfrac{31}{10}\\x=\dfrac{9}{10}\end{matrix}\right.\)

b)

\(\left(x-\dfrac{7}{3}\right):\dfrac{-1}{3}=0,4\\ x-\dfrac{7}{3}=0,4\cdot\dfrac{-1}{3}\\ x-\dfrac{7}{3}=-\dfrac{2}{15}\\ x=-\dfrac{2}{15}+\dfrac{7}{3}\\ x=\dfrac{11}{5}\)

c)

\(\left|x-3\right|=5\\ =>\left[{}\begin{matrix}x-3=5\\x-3=-5\end{matrix}\right.\left[{}\begin{matrix}x=5+3\\x=-5+3\end{matrix}\right.\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)

d)

\(\left(2x+3\right)^2=25\\ =>\left[{}\begin{matrix}2x+3=5\\2x+3=-5\end{matrix}\right.\left[{}\begin{matrix}2x=2\\2x=-8\end{matrix}\right.\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)

e)

\(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)

\(\dfrac{1}{4}:x=\dfrac{2}{5}-\dfrac{3}{4}\)

\(\dfrac{1}{4}:x=-\dfrac{7}{20}\)

\(x=\dfrac{1}{4}:\dfrac{-7}{20}\\ x=-\dfrac{5}{7}\)

f)

\(\left(x-\dfrac{1}{2}\right)^3=\dfrac{1}{27}\\ =>x-\dfrac{1}{2}=\dfrac{1}{3}\\ x=\dfrac{1}{3}+\dfrac{1}{2}\\ x=\dfrac{5}{6}\)