Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi 3 phần đó lần lượt là a, b, c.
a.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{99}{9}=11\)
\(\frac{a}{2}=11\Rightarrow a=11\times2=22\)
\(\frac{b}{3}=11\Rightarrow b=11\times3=33\)
\(\frac{c}{4}=11\Rightarrow c=11\times4=44\)
b.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b+c}{3+5+7}=\frac{285}{15}=19\)
\(\frac{a}{3}=19\Rightarrow a=19\times3=57\)
\(\frac{b}{5}=19\Rightarrow b=19\times5=95\)
\(\frac{c}{7}=19\Rightarrow c=19\times7=133\)
d.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{4}=\frac{b}{7}=\frac{c}{8}=\frac{d}{12}=\frac{a+b+c+d}{4+7+8+12}=\frac{465}{31}=15\)
\(\frac{a}{4}=15\Rightarrow a=15\times4=60\)
\(\frac{b}{7}=15\Rightarrow b=15\times7=105\)
\(\frac{c}{8}=15\Rightarrow c=15\times8=120\)
\(\frac{d}{12}=15\Rightarrow d=15\times12=180\)
a) 99= 22+33+44
b) 285=57+95+133
c) 2A5 là cái gì ?
d) 465= 60+105+120+180

mỗi đề bài cậu gọi là a;b;c rồi áp dụng tính chất dãy tỉ số bằng nhau nhé
a) Chia số 850 thành ba phần tỉ lệ thuận với 3;5;9
b) Chia số 200 thành ba phần tỉ lệ thuận với 7;4;2


Vì x;y;z tỉ lệ thuận với 3;4;5 nên \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Theo t/c của dãy tỉ số bằng nhau ta được:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x-y+z}{3-4+5}=\frac{x-y+z}{4}\)
Thay x - y + z = 20 ta được:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{20}{4}=5\)
Từ \(\frac{x}{3}=5\Rightarrow x=5.3=15\)
Tương tự với y và z
Nhớ k cho mình nhé! Thank you!!!
Vì a,b,c tỉ lệ thuận với 4,7,10 nên \(\frac{a}{4}=\frac{b}{7}=\frac{c}{10}\)
Theo t/c của dãy tỉ số bằng nhau ta có:
\(\frac{a}{4}=\frac{b}{7}=\frac{c}{10}=\frac{2a+3b+4c}{2.4+3.7+4.10}=\frac{2a+3b+4c}{69}\)
Thay 2a + 3b + 4c = 69 ta được:
.........
Tương tự câu a
Nhớ k cho mình nhé! Thank you!!!

a) gọi ba số a,b,c
theo dãy số dằng nhau ta có \(\frac{a}{2}\)=\(\frac{b}{3}\)=\(\frac{c}{4}\)=>\(\frac{a+b+c}{2+3+4}\)=\(\frac{99}{9}\)=11
=> a=22. b=33,c=44
b) tương tự gọi 3 số a,b,c,
theo dãy số dằng nhau ta có \(\frac{a}{3}\)=\(\frac{b}{3}\)=\(\frac{c}{4}\)=>\(\frac{a+b+c}{3+5+7}\)=\(\frac{285}{3+5+7}\)=19
=> a=57,b=95, c=133
c) tương tự bốn số là:\(\frac{247}{4}\);\(\frac{2717}{28}\);\(\frac{3211}{28}\);\(\frac{6175}{28}\)
d, tương tự : bốn số là 60; 105;120;180

X và Y và Z tỉ lệ thuận với 3;4 và 5
Ta có: x/3 = y/4 = z/5
= x - y + z / 3+4+5=20/12
x/3 = 20/12 => x

Gọi x, y, z là ba số cần tìm
Do x, y, z tỉ lệ thuận với 3; 4; 5 nên:
x/3 = y/4 = c/5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/3 = y/4 = c/5 = (a + b + c)/(3 + 4 + 5) = 552/12 = 46
x/3 = 46 ⇒ x = 46.3 = 138
y/4 = 46 ⇒ y = 46.4 = 184
z/5 = 46 ⇒ z = 46.5 = 230
Vậy ba số cần tìm là 138; 184; 230

`a,`
Gọi `3` số được chia từ số 285 lần lượt là `x,y,z (x,y,z \ne 0)`
Vì `3` số được chia thành từ số `285`
`-> x+y+z=285`
Vì `3` số được chia tỉ lệ thuận với `3:5:7`
Nghĩa là: `x/3=y/5=z/7`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/3=y/5=z/7=(x+y+z)/(3+5+7)=285/15=19`
`-> x/3=y/5=z/7=19`
`-> x=19*3=57, y=5*19=95, z=133`
`b,`
Gọi `3` số được chia từ số 450 lần lượt là `x,y,z (x,y,z \ne 0)`
Vì `3` số được chia từ số `450`
`-> x+y+z=450`
Vì `3` số được chia tỉ lệ thuận với `3:7:8`
Nghĩa là: `x/3=y/7=z/8`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/3=y/7=z/8=(x+y+z)/(3+7+8)=450/18=25`
`-> x/3=y/7=z/8=25`
`-> x=3*25=75, y=25*7=175, z=25*8=200`
`c,`
Gọi `3` số được chia từ số 463 lần lượt là `x,y,z (x,y,z \ne 0)`
Vì `3` số được chia thành từ số `463`
`-> x+y+z=463`
Vì `3` Số được chia tỉ lệ thuận với `7:11:13`
Nghĩa là: `x/7=y/11=z/13`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/7=y/11=z/13=(x+y+z)/(7+11+13)=463/31`
`-> x/7=y/11=z/13=463/31`
`-> x=3241/31, y=5093/31, z=6019/31`.
Mk nghĩ câu \(c,\) là \(465\) thì sẽ đúng hơn, vì số \(463\) nó đưa kết quả lớn quá ;-;.

Answer:
Câu 1:
Gọi ba phần được chia từ số 470 lần lượt là x, y, z
Có: Ba phần tỉ lệ nghịch với 3, 4, 5
\(\Rightarrow x3=y4=z5\Rightarrow\frac{x}{20}=\frac{y}{15}=\frac{z}{12}\) và \(x+y+z=470\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{20}=\frac{y}{15}=\frac{z}{12}=\frac{x+y+z}{20+15+12}=\frac{470}{47}=10\)
\(\Rightarrow\hept{\begin{cases}x=200\\y=150\\z=120\end{cases}}\)
Câu 2:
Gọi ba phần được chia từ số 555 lần lượt là x, y, z
\(\Rightarrow\hept{\begin{cases}x+y+z=55\\4x=5y=6z\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=55\\\frac{x}{15}=\frac{y}{12}=\frac{z}{10}=\frac{x}{15+12+10}=\frac{555}{35}=\frac{111}{7}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1665}{7}\\y=\frac{1332}{7}\\z=\frac{1110}{7}\end{cases}}\)
Câu 3:
Gọi ba phần được chia từ số 314 lần lượt là x, y, z
\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{2}{3}x=\frac{2}{5}y=\frac{3}{7}z\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{2x}{3}=\frac{2y}{5}=\frac{3z}{7}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{x}{9}=\frac{y}{15}=\frac{z}{14}=\frac{x+y+z}{9+15+14}=\frac{314}{38}=\frac{157}{19}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1413}{19}\\y=\frac{2355}{19}\\z=\frac{2198}{19}\end{cases}}\)

a. Gọi 3 phần tỉ lệ thuận của 117 là a, b, c ( a,b,c >0 )
Theo bài ra ta có : a : b : c = 2 : 3 :4
tổng 3 số : 117
a/2 = b/3 = c/4 = a + b+c/2+3+4 = 117/9 = 13
=> a = 26
b = 39
c = 52
Gọi thành phần thứ nhất là `x`
Thành phần thứ hai là: `y`
Thành phần thứ ba là `z`
Ba thành phần tỉ lệ thuận với `4;7;9` do đó:
`x/4=y/7=z/9`
Mà tổng của ba thành phần là `2020` ta có:
`x+y+z=2020`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/4=y/7=z/9=(x+y+z)/(4+7+9)=2020/20=101`
Suy ra:
`x/4=101`
`->x=4*101=404`
`y/7=101`
`->y=7*101=707`
`z/9=101`
`->z=9*101=909`
Vậy ba thành phần đó là: `404,707,909`
Gọi số thứ nhất là \(4x\) , số thứ hai là \(7x\) , số thứ ba là \(9x\)
Do đó:
\(4x+7x+9x=2020\)
\(\rArr(4+7+9)x=2020\)
\(\rArr20x=2020\)
\(\rArr x=\dfrac{2020}{20}=101\)
\(\rArr\begin{cases}4x=404\\ 7x=707\\ 9x=909\end{cases}\)
Vậy ba số đó là \(404;707;909\) \(\rarrđpcm\)