Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Vì \(f\left(x\right)⋮x-2;f\left(x\right):x^2-1\) dư 1\(\Rightarrow\left\{{}\begin{matrix}f\left(x\right)=g\left(x\right)\cdot\left(x-2\right)\\f\left(x\right)=q\left(x\right)\left(x^2-1\right)+x=q\left(x\right)\left(x-1\right)\left(x+1\right)+x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=0\\f\left(1\right)=1\\f\left(-1\right)=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}32+4a+2b+c=0\\2+a+b+c=1\\2+a-b+c=-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}4a+2b+c=-32\left(1\right)\\a+b+c=-1\left(2\right)\\a-b+c=-3\left(3\right)\end{matrix}\right.\)
Trừ từng vế của (2) cho (3) ta được:
\(\Rightarrow2b=2\Rightarrow b=1\)
Thay b=1 vào lần lượt (1) ,(2),(3) ta được:
\(\Rightarrow\left\{{}\begin{matrix}4a+2+c=-32\\a+1+c=-1\\a-1+c=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a+c=-34\\a+c=-2\\a+c=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4a+c=-34\left(4\right)\\a+c=-2\left(5\right)\end{matrix}\right.\)
Trừ từng vế của (4) cho (5) ta được:
\(\Rightarrow3a=-32\Rightarrow a=-\dfrac{32}{3}\Rightarrow c=-2+\dfrac{32}{3}=\dfrac{26}{3}\) Vậy...

Bài này trên violimpic à?
Quen thế.
\(A\left(x\right)=x^{19}+x^5-x^{1995}\)
\(Q\left(x\right)=x^2-1\)
\(A\left(x\right)=Q\left(x\right)+r\)
\(<=>x^{19}+x^5-x^{1995}=\left(x^2-1\right)+r\)
Điều này đúng với mọi x thuộc R
Vậy ta có x=1
=> 1+1+1=0+r
=>r=3
Vậy số dư là 3
Cách mình làm là phương pháp giá trị riêng, một phương pháp cực hay trong toán chia hết của các đa thức.
Nó còn là một định lí là định lí Bơzu.
Nhưng trong chương trình phổ thông, nó là phương pháp giá trị riêng.

\(f\left(x\right)\) chia \(x+1\) dư -15 \(\Rightarrow f\left(-1\right)=-15\Rightarrow-a+b=-16\)
\(f\left(x\right)\) chia \(x-3\) dư 45 \(\Rightarrow f\left(3\right)=45\Rightarrow3a+b=0\)
\(\Rightarrow\left\{{}\begin{matrix}-a+b=-16\\3a+b=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=4\\b=-12\end{matrix}\right.\)
\(f\left(x\right)=x^4-x^3-x^2+4x-12=\left(x^2-4\right)\left(x^2-x+3\right)\)
\(f\left(x\right)=0\Leftrightarrow x^2-4=0\Rightarrow x=\pm2\)

Đa thức dư là – x + 1 có hệ số tự do là 1.
Đáp án cần chọn là: C

Câu hỏi của Vinh Lê Thành - Toán lớp 8 - Học toán với OnlineMath Bạn tham khảo nhé!

\(f\left(x\right)=ax^3+bx+c\)
\(\hept{\begin{cases}f\left(-2\right)=0\\f\left(1\right)=1+5=6\\f\left(-1\right)=-1+5=4\end{cases}}\Leftrightarrow\hept{\begin{cases}-8a-2b+c=0\\a+b+c=6\\-a-b+c=4\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b=\frac{1}{2}\\c=5\end{cases}}\)
\(\frac{x^3+a\cdot x+b}{x+1}=\frac{x^3+x^2-x^2-x+\left(a+1\right)x+\left(a+1\right)+b-a-1}{x+1}\)
\(=x^2-x+\left(a+1\right)+\frac{b-a-1}{x+1}\)
\(x^3+a\cdot x+b\) chia cho x+1 dư 7
=>b-a-1=7
=>b-a=8
=>a=b-8
\(\frac{x^3+a\cdot x+b}{x-2}=\frac{x^3-2x^2+2x^2-4x+\left(a+4\right)x-2\left(a+4\right)+2a+8+b}{x-2}\)
\(=\frac{x^2\left(x-2\right)+2x\left(x-2\right)+\left(a+4\right)\left(x-2\right)+2a+b+8}{x-2}\)
\(=x^2+2x+a+4+\frac{2a+b+8}{x-2}\)
Theo đề, ta có: 2a+b+8=4
=>2(b-8)+b+8=4
=>2b-16+b+8=4
=>3b-8=4
=>3b=12
=>b=4
a=b-8=4-8=-4