Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


x^3-2x-4
=x^3-2x-8+4 (Ta thấy - 8 + 4 là bằng -4 nên ta thêm vào thì cũng giống nhau)
=(x^3-8)-(2x-4) (Nhóm hạng tử)
=(x-2)(x^2+2x+4)-2(x-2) \([\)(Hằng đẳng thức 6) và ta thấy -2 là nhân tử chung\(]\)
=(x-2)(x^2+2x+4-x+2) (Rút gọn)
=(x-2)(x^2+x+6)

\(4a^2b^2-\left(a^2+b^2-c^2\right)^2\)
\(=4a^2b^2-2ab\left(a^2+b^2-c^2\right)+2ab\left(a^2+b^2-c^2\right)-\left(a^2+b^2-c^2\right)^2\)
\(=2ab\left[2ab-\left(a^2+b^2-c^2\right)\right]+\left(a^2+b^2-c^2\right)\left[2ab-\left(a^2+b^2-c^2\right)\right]\)
\(=\left(2ab+a^2+b^2-c^2\right)\left(2ab-a^2-b^2+c^2\right)\)
\(=\left(a^2+ab+ab+b^2-c^2\right)\left[c^2-\left(a^2-ab-ab+b^2\right)\right]\)
\(=\left[a\left(a+b\right)+b\left(a+b\right)-c^2\right]\left[c^2-\left(a\left(a-b\right)-b\left(a-b\right)\right)\right]\)
\(=\left[\left(a+b\right)^2-c^2\right]\left[c^2-\left(a-b\right)^2\right]\)
\(=\left[\left(a+b\right)^2-c\left(a+b\right)+c\left(a+b\right)-c^2\right]\left[c^2+c\left(a-b\right)-c\left(a-b\right)-\left(a-b\right)^2\right]\)
\(=\left[\left(a+b\right)\left(a+b-c\right)+c\left(a+b-c\right)\right]\left[c\left(c+a-b\right)-\left(a-b\right)\left(c+a-b\right)\right]\)
\(=\left(a+b+c\right)\left(a+b-c\right)\left(c+a-b\right)\left(c-a+b\right)\)

Tham khảo:https://hoc247.net/hoi-dap/toan-8/phan-tich-da-thuc-x-7-x-2-1-thanh-nhan-tu-faq417522.html
\(=x^7+x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2+x^2-x^2+x-x+1\\ =\left(x^7+x^6+x^5\right)-\left(x^6+x^5+x^4\right)+\left(x^4+x^3+x^2\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)

\(-6a^2+17a-10=-6a^2+12a+5a-10\)
\(=-6a\left(a-2\right)+5\left(a-2\right)=\left(a+2\right)\left(5-6a\right)\)

\(\left(25-m^2\right)=\left(5-m\right)\left(5+m\right)\)

\(10a-25-a^2=-\left(a^2-10a+25\right)=-\left(a^2-2.a.5+5^2\right)=-\left(a-5\right)^2\)
a: \(3x^2+7x-6\)
\(=3x^2+9x-2x-6\)
=3x(x+3)-2(x+3)
=(x+3)(3x-2)
b: \(x^4+x^3-x^2-3x-6\)
\(=x^4+x^3+2x^2-3x^2-3x-6\)
\(=x^2\left(x^2+x+2\right)-3\left(x^2+x+2\right)=\left(x^2+x+2\right)\left(x^2-3\right)\)
c: \(x^4+5x^3+5x^2-5x-6\)
\(=x^4-x^3+6x^3-6x^2+11x^2-11x+6x-6\)
\(=x^3\left(x-1\right)+6x^2\left(x-1\right)+11x\left(x-1\right)+6\left(x-1\right)\)
\(=\left(x-1\right)\left(x^3+6x^2+11x+6\right)\)
\(=\left(x-1\right)\left(x^3+x^2+5x^2+5x+6x+6\right)\)
\(=\left(x-1\right)\left\lbrack x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\right\rbrack\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+5x+6\right)=\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x+3\right)\)