Cho A=20182019+20192020A=20182019+20192020 và B=2018+20192019+2020B=2018+20192019+2020. So sánh A và B.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


A = 2018 2019 + 2019 2020 > 2018 2020 + 2019 2020 = 2018 + 2019 2020 > 2018 + 2019 2019 + 2020 = B
Vậy A > B
Ta có:
\(\frac{2018+2019}{2019+2020}=\frac{2018}{2019+2020}+\frac{2019}{2019+2020}\)
\(\frac{2018}{2019}>\frac{2018}{2019+2020}\)
\(\frac{2019}{2020}>\frac{2019}{2019+2020}\)
Vậy: A>B

A = 2017 2018 + 2018 2019 > 2017 2019 + 2018 2019 = 2017 + 2018 2019 > 2017 + 2018 2018 + 2019 = B

A = 2017 2018 + 2018 2019 > 2017 2019 + 2018 2019 = 2017 + 2018 2019 > 2017 + 2018 2018 + 2019 = B

Ta có
A = 2017 2018 + 2018 2019 > 2017 2019 + 2018 2019 = 2018 + 2018 2019
Mà 2017 + 2018 2019 > 2017 + 2018 2018 + 2019 = B
Nên A > B



Ta có : \(0< \frac{2017}{2018}< 1\) nên \(\frac{2017}{2018}>\frac{2017+2019}{2018+2019}\)(1)
\(0< \frac{2018}{2019}< 1\) nên \(\frac{2018}{2019}>\frac{2018+2018}{2018+2019}\) (2)
Cộng vế theo vế 1 và 2 ta được : \(B=\frac{2017}{2018}+\frac{2018}{2019}>\frac{2017+2018+2018+2019}{2018+2019}=\frac{2017+2018}{2018 +2019}+1=A+1>A\)
Vậy B>A

Ta có :
\(A=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)
Vì :
\(\frac{2017}{2018+2019}< \frac{2017}{2018}\)
\(\frac{2018}{2018+2019}< \frac{2018}{2019}\)
Nên \(\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}\) ( cộng theo vế )
\(\Rightarrow\)\(A< B\)
Vậy \(A< B\)
Chúc bạn học tốt ~
Mình thấy là A<B.
Tách A=2017+2018/2018+2019=2017/2018+2019 + 2018/2018+2019
Ta thấy từng số hạng của A lần lượt nhỏ hơn số hạng của B
=> A<B
A = 20182019 + 20192020
A = 20182019 + 20192019 + 1
A = (20182019 + 1) + 20192019
A = 20182020 + 20192019
B = 2018 + 20192019 + 2020
B = (2018 + 2020) + 20192019
B = 4038 + 20192019 < 20182019 + 20192019
Ta có:
A = 20182019 + 20192020 = 40374039
B = 2018 + 20192019 + 2020 = 20190657
Vì 40374039 > 20190657 nên A > B
Vậy A > B