chứng minh \(\frac{x+1}{x-1}< \frac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left[\frac{2}{3x}-\frac{2}{x+1}\left(\frac{x+1}{3x}-x-1\right)\right]:\frac{x-1}{x}\)
\(=\left[\frac{2}{3x}-\frac{2\left(x+1\right)}{\left(x+1\right).3x}-\frac{2\left(-x-1\right)}{x+1}\right]:\frac{x-1}{x}\)
\(=\)\(\left[\frac{2}{3x}-\frac{2\left(x+1\right)}{\left(x+1\right).3x}+\frac{2\left(x+1\right)}{x+1}\right]:\frac{x-1}{x}\)
\(=\left[\frac{2}{3x}-\frac{2}{3x}+2\right]:\frac{x-1}{x}\)
\(=2.\frac{x}{x-1}=\frac{2x}{x-1}\)\(\left(đpcm\right)\)
ĐKXĐ:...
\(\left[\frac{2}{3x}-\frac{2}{x+1}\left(\frac{x+1}{3x}-x-1\right)\right]:\frac{x-1}{x}=\left[\frac{2}{3x}-\frac{2}{x+1}\left(\frac{-3x^2-2x+1}{3x}\right)\right]:\frac{x-1}{x}\)
\(=\left[\frac{2}{3x}-\frac{2\left(x+1\right)\left(1-3x\right)}{3x\left(x+1\right)}\right].\frac{x}{x-1}=\left(\frac{2}{3x}-\frac{2\left(1-3x\right)}{3x}\right).\left(\frac{x}{x-1}\right)\)
\(=\left(\frac{2-2+6x}{3x}\right)\left(\frac{x}{x-1}\right)=\frac{2x}{x-1}\)
Lời giải:
Với $x+y+z=0$ ta có:
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{xz}-\left(\frac{2}{xy}+\frac{2}{yz}+\frac{2}{xz}\right)\)
\(=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2-\frac{2(x+y+z)}{xyz}\)
\(=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)
\(\Rightarrow \sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=\sqrt{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}=\left|\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right|\)
Ta có đpcm.