K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2017

khó quá ! Em chưa học ! Hì Hì ????????????????

5 tháng 12 2017

a. Xét tứ giác AEMF có MFA=FAE=AEM=90*

=> AEMF là hình chữ nhật

b. Do AC vuông góc với AB và EM vuông góc với AB nên EM//AC

Xét tam giác ABC có BM=CM; EM//AC

=> BE=AE

Do AEMF là hình chữ nhật nên AE=MF

Mà BE=AE => BE=FM

Do AB vuông góc AC và FM vuông góc AC nên FM//AB hay FM//BE

Xét tứ giác BEFM có BE//FM; BE=FM

=> BEFM là hình bình hành 

c: Ta có: ΔAHC vuông tại H

mà HF là đường trung tuyến

nên HF=AF

mà AF=ME

nên HF=ME

Xét ΔABC có

E là trung điểm của AB

F là trung điểm của AC

Do đó: FE là đường trung bình

=>FE//BC

hay FE//MH

Xét tứ giác EFMH có FE//MH

nên EFMH là hình thang

mà FH=ME

nên EFMH là hình thang cân

d: Xét tứ giác MNAB có 

MN//AB

MN=AB

Do đó: MNAB là hình bình hành

Suy ra: MA cắt NB tại trung điểm của mỗi đường(1)

Ta có: AEMF là hình chữ nhật

nên MA cắt EF tại trung điểm của mỗi đường(2)

Từ (1) và (2) suy ra AM,BN,FE đồng quy

a: Xét tứ giác AEMF có

AE//MF

AF//ME

góc FAE=90 độ

=>AEMF là hình chữ nhật

Xét ΔABC có

M là trung điểm của BC

ME//AC

=>E là trung điểm của AB

Xét ΔABC có

m là trung điểm của BC

MF//AB

=>F là trung điểm của AC

Xét ΔCAB có MF//AB

nên MF/AB=CM/CB=1/2

=>MF=1/2BA=EB

mà MF//EB

nên MFEB là hbh

b: AEMF là hcn

=>AM cắt EF tại trung điểm của mỗi đường

=>O là trung điểm của EF

=>OE=OF

a) Xét tứ giác AEMF có

\(\widehat{EAF}=90^0\)(gt)

\(\widehat{AEM}=90^0\)(gt)

\(\widehat{AFM}=90^0\)(gt)

Do đó: AEMF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Xét ΔABC có

M là trung điểm của BC(gt)

MF//AB(cùng vuông góc với AC)

Do đó: F là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)

Xét ΔABC có 

M là trung điểm của BC(gt)

F là trung điểm của AC(cmt)

Do đó: MF là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra: \(MF=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)

mà AE=MF(AFME là hình chữ nhật)

nên \(AE=\dfrac{AB}{2}\)

mà A,E,B thẳng hàng(gt)

nên E là trung điểm của AB

Ta có: F là trung điểm của NM(gt)

nên \(MN=2\cdot MF\)(1)

Ta có: E là trung điểm của AB(cmt)

nên AB=2AE(2)

Ta có: AEMF là hình chữ nhật(cmt)

nên MF=AE(Hai cạnh đối)(3)

Từ (1), (2) và (3) suy ra MN=AB

Xét tứ giác ABMN có 

MN//AB(cùng vuông góc với AC)

MN=AB(cmt)

Do đó: ABMN là hình bình hành(Dấu hiệu nhận biết hình bình hành)

a; Xét tứ giác AEMF có

góc AEM=góc AFM=góc FAE=90 độ

=>AEMF là hình chữ nhật

b: Xét ΔBAC có

M là trung điểm của BC

ME//AC

=>E là trung điểm của AB

Xét tứ giác AMBN có

E là trung điẻm chung của AB và MN

MA=MB

=>AMBN là hình thoi

c: Để AMBN là hình vuông thì góc AMB=90 độ

=>góc B=45 độ

d: AM=5cm

=>AN=5cm

MN=AC=căn 10^2-8^2=6cm

\(P=\dfrac{5+5+6}{2}=8\left(cm\right)\)

\(S=\sqrt{8\cdot\left(8-5\right)\left(8-5\right)\cdot\left(8-6\right)}=\sqrt{8\cdot2\cdot3\cdot3}=4\cdot3=12\left(cm^2\right)\)

3 tháng 2 2023

mình cảm ơn nhiều ạ !!

18 tháng 11 2021

b ơi b có kiến thức cơ bản không để mình chỉ hướng dẫn b làm th chứ làm hết dài lắm

 

18 tháng 11 2021

bạn cứ làm hết đi ạ rồi mình sẽ lựa chọn rồi rút ngắn lại ạ

 

a: Xét tứ giác AEMF có

góc AEM=góc AFM=góc FAE=90 độ

nên AEMF là hình chữ nhật

b: AB=căn (20^2-16^2)=12cm

S=12*16/2=12*8=96cm2

c: Xét tứ giác AMCD có

F là trung điểm chung của AC và MD

MA=MC

Do đó: AMCD là hình thoi