Cho a, b là các số thực thỏa mãn : \(a^3-3a^2+5a-17\)\(=0\) và \(b^3-3b^2+5b+11=0\). Tính \(a+b\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Lời giải 1. Từ3 2
b 3b 5b 11 0− + + = ta được( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
3 2 3 2 2
3 2 2 2
2 2 2 2
b 3b 5b 11 0 b 6b 12b 8 3 b 4b 4 5 b 2 17 0
b 2 3 b 2 5 b 2 17 0 2 b 3 b 2 5 2 b 17 0
2 b 3 b 2 5 2 b 17 0 2 b 3 b 2 5 2 b 17 0
− + + = − + − + − + + − + =
− + − + − + = − − + − − − + =
− − − − + − − = − − − + − − =
Từ đó kết hợp với3 2
a 3a 5a 17 0− + − = ta suy ra được( ) ( ) ( )
2 23 2
a 3a 5a 17 2 b 3 b 2 5 2 b 17 0− + − = − − − + − − =
Do vậy ta cóa 2 b= − haya b 2+ =
+ Lời giải 2. Xéta 2 b= − thay vào vế trái của3 2
a 3a 5a 17 0− + − = , ta có( ) ( ) ( )
( )
3 23 2
2 3 2
3 2 3 2
a 3a 5a 17 2 b 3 2 b 5 2 b 17
8 12b 6b b 12 12b 3b 10 5b 17
b 3b 5b 11 b 3b 5b 11 0
− + − = − − − + − −
= − + − − + − + − −
= − + − − = − − + + =
Điều này dẫn đếna 2 b= − thỏa mãn3 2
a 3a 5a 17 0− + − = . Từ đó suy raa b 2+ = .•
Lời giải 3. Ta có( ) ( )
33 2 3 2
a 3a 5a 17 a 3a 3a 1 2a 16 a 1 2 a 1 14− + − = − + − + − = − + − − .
Đặtx a 1= − , khi đó kết hợp với giả thiết ta được3
x 2x 14 0+ − =
Ta cũng có( ) ( )
33 2 3 2
b 3b 5b 11 b 3b 3b 1 2b 12 b 1 2 b 1 14− + + = − + − + + = − + − +
Đặty b 1= − , khi đó kết hợp với giả thiết ta được3
y 2y 14 0+ + = . Kết hợp hai kết
quả ta được( ) ( )( )3 3 3 3 2 2
x 2x 14 y 2y 14 0 x y 2 x y 0 x y x xy y 2 0+ − + + + = + + + = + − + + =
Dễ thấy22 2 2
2 2 2 y 3y y 3y
x xy y 2 x xy 2 x 2 0
4 4 2 4
− + + = − + + + = + + +
.
Do đó ta đượcx y 0+ = haya 1 b 1 0− + − = nêna b 2+ = .•
Lời giải 4. Cộng theo vế các hệ thức đã cho ta được
Xét phương trình
\(x^3-3x^2+5x-17=0\Leftrightarrow\left(x-1\right)^3+2\left(x-1\right)-14=0\text{ }\left(1\right)\)
Chứng minh (1) có 1 nghiệm duy nhất:
+Phương trình bậc ba luôn có tối thiểu 1 nghiệm
+Giả sử (1) có 1 nghiệm là \(x=a\)
Nếu \(x>a\) thì \(x-1>a-1\Rightarrow\hept{\begin{cases}\left(x-1\right)^3>\left(a-1\right)^3\\x-1>a-1\end{cases}}\)
\(\Rightarrow\left(x-1\right)^3+2\left(x-1\right)-14>\left(a-1\right)^3+2\left(a-1\right)-14=0\) => (1) vô nghiệm
Nếu \(x< a\), tương tự, (1) cũng vô nghiệm.
Vậy (1) có duy nhất 1 nghiệm
Xét phương trình
\(y^3-3y^2+5y+11=0\text{ }\left(2\right)\)\(\Leftrightarrow\left(2-y\right)^3-3\left(2-y\right)^2+5\left(2-y\right)-17=0\)
Đây chính là phương trình (1) nhưng với biến \(2-y\) nên có nghiệm \(2-y=a\); mà theo đề bài, nghiệm của (2) là \(y=b\)
Nên \(2-b=a\)
\(\Rightarrow a+b=2\)
Xét phương trình
x3−3x2+5x−17=0⇔(x−1)3+2(x−1)−14=0 (1)
Chứng minh (1) có 1 nghiệm duy nhất:
+Phương trình bậc ba luôn có tối thiểu 1 nghiệm
+Giả sử (1) có 1 nghiệm là x=a
Nếu x>a thì x−1>a−1⇒{
⇒(x−1)3+2(x−1)−14>(a−1)3+2(a−1)−14=0 => (1) vô nghiệm
Nếu x<a, tương tự, (1) cũng vô nghiệm.
Vậy (1) có duy nhất 1 nghiệm
Xét phương trình
y3−3y2+5y+11=0 (2)⇔(2−y)3−3(2−y)2+5(2−y)−17=0
Đây chính là phương trình (1) nhưng với biến 2−y nên có nghiệm 2−y=a; mà theo đề bài, nghiệm của (2) là y=b
Nên 2−b=a
⇒a+b=2