Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^3-3a^2+3a-1+2a-16=0\Leftrightarrow\left(a-1\right)^3+2a-16=0\)
Tương tự: \(\left(b-1\right)^3+2b+12=0\)
Cộng vế với vế:
\(\left(a-1\right)^3+\left(b-1\right)^3+2\left(a+b-2\right)=0\)
\(\Leftrightarrow\left(a+b-2\right)\left[\left(a-1\right)^2-\left(a-1\right)\left(b-1\right)+\left(b-1\right)^2+2\right]=0\)
\(\Leftrightarrow a+b-2=0\)
Lời giải:
Xét \(a^3+b^3-ab(a+b)=(a+b)(a-b)^2\geq 0, \forall a,b>0\)
Do đó \(a^3+b^3\geq ab(a+b)\) với mọi $a,b>0$
\(\Rightarrow b^3\geq ab(a+b)-a^3\)
\(\Rightarrow \frac{5a^3-b^3}{ab+3a^2}\leq \frac{5a^3-[ab(a+b)-a^3]}{ab+3a^2}=\frac{6a^2-b(a+b)}{b+3a}\)
hay \(\frac{5a^3-b^3}{ab+3a^2}\leq \frac{(2a-b)(3a+b)}{b+3a}=2a-b\)
Hoàn toàn tương tự ta có:
\(\frac{5b^3-c^3}{bc+3b^2}\leq 2b-c; \frac{5c^3-a^3}{ca+3c^2}\leq 2c-a\)
Cộng theo vế các BĐT thu được:
\(\text{VT}\leq a+b+c\leq 2018\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c=\frac{2018}{3}\)
a) Ta có: \(\sqrt{125}-4\sqrt{45}+3\sqrt{20}-\sqrt{80}\)
\(=5\sqrt{5}-4.3\sqrt{5}+3.2\sqrt{5}-4\sqrt{5}\)
\(=5\sqrt{5}-12\sqrt{5}+6\sqrt{5}-4\sqrt{5}\)
\(=-5\sqrt{5}\)
\(\approx-11,18033989\)
mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !
bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu
bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)
những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện
a) Ta có:
\(5\sqrt{a}-4b\sqrt{25a^3}+5a\sqrt{16ab^2}-2\sqrt{9a}\)
\(=5\sqrt{a}-4b.5a\sqrt{a}+5a.4b\sqrt{a}-2.3\sqrt{a}\)
\(=5\sqrt{a}-20ab\sqrt{a}+20ab\sqrt{a}-6\sqrt{a}\) \(=-\sqrt{a}\)
b) Ta có:
\(5a\sqrt{64ab^3}-\sqrt{3}.\sqrt{12a^3b^3}+2ab\sqrt{9ab}\) \(-5b\sqrt{81a^3b}\)
\(=5a.8b\sqrt{ab}-\sqrt{3.12a^3b^3}+2ab.3\sqrt{ab}\) \(-5b.9a\sqrt{ab}\)
\(=40ab\sqrt{ab}-6ab\sqrt{ab}+6ab\sqrt{ab}-45ab\)\(\sqrt{ab}\)
\(=-5ab\sqrt{ab}\)
4/ Xét hiệu: \(P-2\left(ab+7bc+ca\right)\)
\(=5a^2+11b^2+5c^2-2\left(ab+7bc+ca\right)\)
\(=\frac{\left(5a-b-c\right)^2+6\left(3b-2c\right)^2}{5}\ge0\)
Vì vậy: \(P\ge2\left(ab+7bc+ca\right)=2.188=376\)
Đẳng thức xảy ra khi ...(anh giải nốt ạ)
@Cool Kid:
Bài 5: Bản chất của bài này là tìm k (nhỏ nhất hay lớn nhất gì đó, mình nhớ không rõ nhưng đại khái là chọn k) sao cho: \(5a^2+11b^2+5c^2\ge k\left(ab+7bc+ca\right)\)
Rồi đó, chuyển vế, viết lại dưới dạng tam thức bậc 2 biến a, b, c gì cũng được rồi tự làm đi:)
Xét phương trình
\(x^3-3x^2+5x-17=0\Leftrightarrow\left(x-1\right)^3+2\left(x-1\right)-14=0\text{ }\left(1\right)\)
Chứng minh (1) có 1 nghiệm duy nhất:
+Phương trình bậc ba luôn có tối thiểu 1 nghiệm
+Giả sử (1) có 1 nghiệm là \(x=a\)
Nếu \(x>a\) thì \(x-1>a-1\Rightarrow\hept{\begin{cases}\left(x-1\right)^3>\left(a-1\right)^3\\x-1>a-1\end{cases}}\)
\(\Rightarrow\left(x-1\right)^3+2\left(x-1\right)-14>\left(a-1\right)^3+2\left(a-1\right)-14=0\) => (1) vô nghiệm
Nếu \(x< a\), tương tự, (1) cũng vô nghiệm.
Vậy (1) có duy nhất 1 nghiệm
Xét phương trình
\(y^3-3y^2+5y+11=0\text{ }\left(2\right)\)\(\Leftrightarrow\left(2-y\right)^3-3\left(2-y\right)^2+5\left(2-y\right)-17=0\)
Đây chính là phương trình (1) nhưng với biến \(2-y\) nên có nghiệm \(2-y=a\); mà theo đề bài, nghiệm của (2) là \(y=b\)
Nên \(2-b=a\)
\(\Rightarrow a+b=2\)
Xét phương trình
x3−3x2+5x−17=0⇔(x−1)3+2(x−1)−14=0 (1)
Chứng minh (1) có 1 nghiệm duy nhất:
+Phương trình bậc ba luôn có tối thiểu 1 nghiệm
+Giả sử (1) có 1 nghiệm là x=a
Nếu x>a thì x−1>a−1⇒{
⇒(x−1)3+2(x−1)−14>(a−1)3+2(a−1)−14=0 => (1) vô nghiệm
Nếu x<a, tương tự, (1) cũng vô nghiệm.
Vậy (1) có duy nhất 1 nghiệm
Xét phương trình
y3−3y2+5y+11=0 (2)⇔(2−y)3−3(2−y)2+5(2−y)−17=0
Đây chính là phương trình (1) nhưng với biến 2−y nên có nghiệm 2−y=a; mà theo đề bài, nghiệm của (2) là y=b
Nên 2−b=a
⇒a+b=2