X-3/5=-20/x-3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.




Câu 6: Khôg có cau nào đúng
Câu 7: C
Câu 8: B
Câu 9: B
Câu 10: D

\(2x+3=8\)
\(\Rightarrow2x=8-3\)
\(\Rightarrow2x=5\)
\(\Rightarrow x=\dfrac{5}{2}\)
\(x:5-2=3\)
\(\Rightarrow x:5=3+2\)
\(\Rightarrow x:5=5\)
\(\Rightarrow x=5\cdot5\)
\(\Rightarrow x=25\)
\(x:7-2=19\)
\(\Rightarrow x:7=19+2\)
\(\Rightarrow x:7=21\)
\(\Rightarrow x=21\cdot7\)
\(\Rightarrow x=147\)
Mình chưa rõ đề
\(20-\left(x+3\right)=5\)
\(\Rightarrow-x-3=5-20\)
\(\Rightarrow-x-3=-15\)
\(\Rightarrow-x=-15+3\)
\(\Rightarrow-x=-12\)
\(\Rightarrow x=12\)

`#040911`
`a,`
`15 + 25 \div (2x - 1) = 20`
`\Rightarrow 25 \div (2x - 1) = 20 - 15`
`\Rightarrow 25 \div (2x - 1) = 5`
`\Rightarrow 2x - 1 = 25 \div 5`
`\Rightarrow 2x - 1 = 5`
`\Rightarrow 2x = 6`
`\Rightarrow x = 3`
Vây, `x = 3.`
`b,`
\(3^{x-1}+2\cdot3^x=21\)
`\Rightarrow 3^x \div 3 + 2. 3^x = 21`
`\Rightarrow 3^x . \frac{1}{3} + 2. 3^x = 21`
`\Rightarrow 3^x . (\frac{1}{3} + 2) = 21`
`\Rightarrow 3^x . \frac{7}{3} = 21`
`\Rightarrow 3^x = 21 \div \frac{7}{3}`
`\Rightarrow 3^x = 9`
`\Rightarrow 3^x = 3^2`
`\Rightarrow x = 2`
Vậy, `x = 2.`
`c,`
\(2^{x-3}+2^{x+1}=17\)
`\Rightarrow 2^x \div 2^3 + 2^x . 2 = 17`
`\Rightarrow 2^x . \frac{1}{8} + 2^x . 2 = 17`
`\Rightarrow 2^x . (\frac{1}{8} + 2) = 17`
`\Rightarrow 2^x . \frac{17}{8} = 17`
`\Rightarrow 2^x = 17 \div \frac{17}{8}`
`\Rightarrow 2^x = 8`
`\Rightarrow 2^x = 2^3`
`\Rightarrow x = 3`
Vậy, `x = 3`
`d,`
\(5^x-5^{x-1}=20\)
`\Rightarrow 5^x - 5^x \div 5 = 20`
`\Rightarrow 5^x - 5^x . \frac{1}{5} = 20`
`\Rightarrow 5^x . (1 - \frac{1}{5} = 20`
`\Rightarrow 5^x . \frac{4}{5} = 20`
`\Rightarrow 5^x = 20 \div \frac{4}{5}`
`\Rightarrow 5^x = 25`
`\Rightarrow 5^x = 5^2`
`\Rightarrow x = 2`
Vậy, `x = 2.`
\(a.25:\left(2x-1\right)=5\)
\(2x-1=5\Leftrightarrow2x=6\Leftrightarrow x=3\)
\(b.3^x:3+2.3^x=21\)\(\Leftrightarrow3^x.\dfrac{1}{3}+2.3^x=21\)
\(\Leftrightarrow3^x\left(\dfrac{1}{3}+2\right)=21\)
\(\Leftrightarrow3^x.\dfrac{7}{3}=21\)
\(\Leftrightarrow3^x=9\Leftrightarrow x=2\)
\(c.2^x:2^3+2^x.2=17\Leftrightarrow2^x.\dfrac{1}{8}+2^x.2=17\)
\(\Leftrightarrow2^x.\dfrac{17}{8}=17\Leftrightarrow2^x=8\Leftrightarrow x=3\)
\(d.5^x-5^x:5=20\Leftrightarrow5^x-5^x.\dfrac{1}{5}=20\)
\(\Leftrightarrow5^x\left(1-\dfrac{1}{5}\right)=20\Leftrightarrow5^x=20:\dfrac{4}{5}\Leftrightarrow5^x=25\Leftrightarrow x=2\)

Lời giải:
a.
$\frac{2}{3}+\frac{1}{3}:3\times x=20\text{%}$
$\frac{2}{3}+\frac{1}{9}\times x=\frac{1}{5}$
$\frac{1}{9}\times x=\frac{1}{5}-\frac{2}{3}=\frac{-7}{15}$
$x=\frac{-7}{15}: \frac{1}{9}=\frac{-21}{5}$
b.
$\frac{3-x}{5-x}=\frac{6}{11}$
$\Rightarrow 6(5-x)=11(3-x)$
$\Rightarrow 30-6x=33-11x$
$\Rightarrow 5x=3$
$\Rightarrow x=\frac{3}{5}$

a: \(\Leftrightarrow\left|\dfrac{5}{3}x\right|=\dfrac{1}{6}\)
\(\Leftrightarrow\left[{}\begin{matrix}x\cdot\dfrac{5}{3}=\dfrac{1}{6}\\x\cdot\dfrac{5}{3}=-\dfrac{1}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{6}:\dfrac{5}{3}=\dfrac{3}{30}=\dfrac{1}{10}\\x=-\dfrac{1}{10}\end{matrix}\right.\)
b: \(\Leftrightarrow\left|\dfrac{3}{4}x-\dfrac{3}{4}\right|=\dfrac{3}{4}+\dfrac{3}{4}=\dfrac{3}{2}\)
\(\Leftrightarrow\left|x-1\right|=\dfrac{3}{2}:\dfrac{3}{4}=2\)
=>x-1=2 hoặc x-1=-2
=>x=3 hoặc x=-1
c: \(\Leftrightarrow\left|x+\dfrac{3}{5}\right|=\left|x-\dfrac{7}{3}\right|\)
\(\Leftrightarrow x+\dfrac{3}{5}=\dfrac{7}{3}-x\)
=>2x=44/15
hay x=22/15

\(ĐK:x\ne3\)
\(\dfrac{3-x}{20}=\dfrac{-5}{x-3}\)
\(\Leftrightarrow-\dfrac{\left(x-3\right)\left(x-3\right)}{20\left(x-3\right)}=-\dfrac{5.20}{20\left(x-3\right)}\)
\(\Leftrightarrow\left(x-3\right)^2=100\)
\(\Leftrightarrow\left(x-3\right)=10^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=10\\x-3=-10\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=13\\x=-7\end{matrix}\right.\) (tm)
Vậy \(S=\left\{13;-7\right\}\)
(x - 3)² = -100 (vô lý)
Vậy không tìm được x thỏa mãn yêu cầu đề bài
\(\frac{x-3}{5}\) = \(-\frac{20}{x-3}\)
(\(x-3\)).(\(x-3\)) = -20.5
(\(x-3\))\(^2\) = - 100
(\(x-3)^2\) ≥ 0 > -100 ∀ \(x\)
Không có giá trị nào của \(x\) thỏa mãn đề bài.
Kết luận: \(x\) \(\in\) ∅