K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2023

thiếu tham khảo

10 tháng 8 2021

a) Ta có AB // CD (gt)
=> gBAK = gDKA ( so le trong)
Mà gBAK = gDAK (AK là phân giác góc A)
 gDAK = g DKA
 ΔADK cần tại D có DP là pg goc D (gt)
 DP đồng thời đường cao( TC)
 DP ┴AK ( đpcm)
Cm tương tự có ΔBCK cân tại C ( gKBC=gBKC = gABK) có CQ là phân giác => CQ ┴BK ( đpcm)
b)c/m AD + BC = DC
Theo cma) ΔADK cân tại D => AD= DK
ΔBCK cân tại C => BC= CK
 CD = DK+ CK = AD+ BC ( đpcm)
c)Lấy M,N là trung điểm của AD và BC => MN là đường trung bình của hình thang ABCD (đn)
=> MN // AB ; MN // CD (1)
+) Vì ΔADK cân tại D có DP là phân giác nên đồng thời là đường trung tuyến => AP = PK
Xét ΔADK có AM= MD; AP = PK (cmt)
 MP là đg TB (đn)
 MP // DK (tc), K thuộc CD
=> MP // CD (2)
Tương tự : ΔBCK cân tại C có CQ là pg => QB= QK mà NB= NC => NQ là đg TB của ΔBCK => NQ // CK hay NQ // CD (3)
(1)(2)(3) => M,N,P,Q th. hàng hay P,Q thuộc đường trung bình MN. (ĐP

1: Ta có:ABCD là hình chữ nhật

nên AB=CD;AD=BC

2: Xét tứ giác ABCD có 

AB=CD

AD=BC

Do đó: ABCD là hình bình hành

Xét ΔADE và ΔCBF có 

\(\widehat{D}=\widehat{B}\)

AD=CB

\(\widehat{DAE}=\widehat{BCF}\)

Do đó: ΔADE=ΔCBF

Suy ra: \(\widehat{AED}=\widehat{CFB}\)

=>\(\widehat{AEC}=\widehat{CFA}\)

Xét tứ giác AECF có

\(\widehat{AEC}=\widehat{CFA}\)

\(\widehat{FAE}=\widehat{FCE}\)

Do đó: AECF là hình bình hành

Suy ra: AE//CF