Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Chứng minh rằng: (a2+b2)cd=(c2+d2)ab
các bạn ơi giải giúp mình mai mình thi rùi.........thanks you
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn đánh lại đề đi, Để ghi dấu mũ bạn ấn nút "x2" trên thanh công cụ, sau khi bạn gõ xong dấu mũ rồi bạn ấn lại nó để đưa về trạng thái thường
\(\frac{\left(a+b\right)2}{\left(c+d\right)2}=\frac{2a+2b}{2c+2d}\)
Vậy \(\frac{\left(a+b\right)2}{\left(c+d\right)2}=\frac{2a+2b}{2c+2d}\)
a) 3,5(15) = 3,5 + 0,0(15) = 3,5 + 1,5. 0,(01) = 3,5 + 1,5.1/99 = 3,5 + 1/66 = 116/33
b) Ta có: \(\frac{2x-y}{x+y}=\frac{2}{3}\)
=> (2x - y).3 = 2(x + y)
=> 6x - 3y = 2x + 2y
=> 6x - 2x = 2y + 3y
=> 4x = 5y
=> \(\frac{x}{y}=\frac{5}{4}\)
c) Đặt : \(\frac{a}{b}=\frac{c}{d}=k\) => \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Khi đó, ta có:
\(\frac{\left(bk\right)^2+bk.dk}{\left(dk\right)^2+dk.bk}=\frac{b^2k^2+bdk^2}{d^2k^2+bdk^2}=\frac{k^2\left(b^2+bd\right)}{k^2\left(d^2+bd\right)}=\frac{b^2+bd}{d^2+bd}\)
=> Đpcm
đặt a/b=c/d=k=>a=bk;c=dk
=>\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{\left(b\left(k+1\right)\right)^2}{\left(d\left(k+1\right)\right)^2}=\frac{b^2}{d^2}\) (1)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}\) (2)
từ (1) và (2)=>đpcm
tick nhé
a)Gọi \(\frac{a}{b}=\frac{c}{d}=k\)
Suy ra \(\begin{cases}a=bk\\c=dk\end{cases}\)
Xét VT \(\frac{a}{a+b}=\frac{bk}{bk+b}=\frac{bk}{b\left(k+1\right)}=\frac{k}{k+1}\left(1\right)\)
Xét VP \(\frac{c}{c+d}=\frac{dk}{dk+d}=\frac{dk}{d\left(k+1\right)}=\frac{k}{k+1}\left(2\right)\)
Từ (1) và (2) ->Đpcm
b)Gọi \(\frac{a}{b}=\frac{c}{d}=k\)
Suy ra \(\begin{cases}a=bk\\c=dk\end{cases}\)
Xét VT \(\frac{a}{a-b}=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\left(1\right)\)
Xét VP \(\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\left(2\right)\)
Từ (1) và (2)-> ĐPcm
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{c}{d}.\dfrac{c}{d}=\dfrac{a}{b}.\dfrac{c}{d}\)
\(\Rightarrow\dfrac{ac}{bd}=\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}=\dfrac{a^2+c^2}{b^2+d^2}\)