Cho \(\Delta\)ABC, qua A vẽ xy//BC (M\(\in\)BC). Qua M vẽ các đường thẳng // với AB,AC cắt theo thứ tự D và E
CMR:a)\(\Delta\)ABC=\(\Delta\)MDE
b)3 đường thẳng AM;BD;CE đồng quy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Các đường thẳng EM và MD cắt AB và AC lần lượt là K và H.
Kẻ đường thẳng EM,Ta có Vì EC//KM ta có HAMˆHAM^=AMEˆAME^(1)
Vì AB//MD=>KAMˆKAM^=AMDˆAMD^(2)
Mà BACˆBAC^=KAMˆKAM^+HAMˆHAM^(3)
tiếp KMDˆKMD^=KMAˆKMA^+AMDˆAMD^(4)
Từ (1),(2),(3) và (4)=>BACˆBAC^=EMDˆEMD^
Kẻ D với B.Xét tam giác ABD và tam giác MDB có:
DB là cạnh chung
MDBˆMDB^=DBAˆDBA^(vì MD//AB)
ADBˆADB^=DBMˆDBM^(vì xy//BC)
=>Tam giác ABD=Tam giác MDB(g.c.g)
=>DM=AB.
Kẻ E với C.Xét tam giác AEM và tam giác MCA có:
AM là cạnh chung
ACEˆACE^=CAMˆCAM^)(vì ME//AC)
EAMˆEAM^=AMCˆAMC^(vì xy//BC)
=>Tam giác AEM=Tam giác MCA(g.c.g)
=>ME=AC
Xét tam giác ABC và tam giác MDE có:
DM=AB(c/m trên)
ME=AC(c/m trên)
BACˆBAC^=EMDˆEMD^
=>Tam giác ABC=Tam giác MDE(c.g.c)
2)Thiếu điều kiện rồi.
Bài 6 mình sẽ bắt đầu bằng câu b nhé!
b)Vì MACˆMAC^+BAMˆBAM^=90o90o(gt)
Vì MACˆMAC^+CAEˆCAE^=90o90o(gt)
Từ trên=>CAEˆCAE^= BAMˆBAM^
Xét tam giác ABM và tam giác ACE có:
AB=BC(gt)
AM=AE(gt)
CAEˆCAE^= BAMˆBAM^(c/m trên)
=>Tam giác ABM=Tam giác ACE(c.g.c)
=>EC=BM(hai cạnh tương ứng)
c)Ta có: MABˆMAB^+MACˆMAC^=90o90o(gt)
Ta lại có tiếp: MABˆMAB^+BADˆBAD^=90o90o(gt)
=>BADˆBAD^=MACˆMAC^
Xét tam giác ADB và tam giác AMC có:
AB=AC(gt)
DA=AM(gt)
BADˆBAD^=MACˆMAC^(c/m trên)
=>Tam giác ADB=Tam giác AMC(c.g.c)
=>DB=MC(hai cạnh tương ứng)
Ta có BM+MC=BC(do M nằm giữa B và C)
Mà BM=EC(c/m trên)
DB=MC(c/m trên)
=>EC+DB=BC
d)Vì Tam giác ABM=Tam giác ACE(c/m trên)
=>ACEˆACE^=B^B^=45o45o(Vì góc B là góc ở đáy của tam giác vuông cân BAC tại A)
Vậy Ta có C^C^+ACEˆACE^=BCEˆBCE^=90o90o.(1)
Vì Tam giác ADB=Tam giác AMC(c/m trên)
=>C^C^=DBAˆDBA^=45o45o
Vậy B^B^+DBAˆDBA^=DBCˆDBC^=90o90o(2)
Từ (1) và (2)=>BCEˆBCE^= DBCˆDBC^=90o90o vậy BCEˆBCE^+DBCˆDBC^=180o180o mà hai góc này nằm ở vị trí trong cùng phía =>DB//EC
a) Có AD // BM (gt), DM // AB (gt) => DA = BM; DM = AB ( tính chất đoạn chắn) (1)
AE // CM (gt); AC // EM (gt) => AE = CM; AC = EM ( tính chất đoạn chắn) (2)
Từ (1) và (2) => AD + AE = BM + CM
=> DE = BC
Xét ΔABCΔABC và ΔMDEΔMDE có:
AB = DM (cmt)
BC = DE (cmt)
AC = EM (cmt)
Do đó, ΔABC=ΔΔABC=ΔMDE (c.c.c)
\(1,BM//AD\Rightarrow\widehat{BMA}=\widehat{MAD};\widehat{BAM}=\widehat{AMD}\\ \left\{{}\begin{matrix}\widehat{BMA}=\widehat{MAD}\\AM.chung\\\widehat{BAM}=\widehat{AMD}\end{matrix}\right.\Rightarrow\Delta ABM=\Delta MDA\left(g.c.g\right)\\ \Rightarrow AD=BM;MD=AB\\ \)
Chứng minh tương tự, ta được \(\Delta ACM=\Delta MEA\left(g.c.g\right)\)
\(\Rightarrow AE=MC;ME=AC\\ \Rightarrow DE=DA+AE=BM+MC=BC\\ \left\{{}\begin{matrix}DE=BC\\AC=ME\\AB=MD\end{matrix}\right.\Rightarrow\Delta ABC=\Delta MDE\left(c.c.c\right)\)
\(b,\)
\(AE//CM\Rightarrow\widehat{OAE}=\widehat{OMC};\widehat{OEA}=\widehat{OCM}\\ Mà.AE=CM\\ \Rightarrow\Delta OAE=\Delta OMC\left(g.c.g\right)\\ \Rightarrow OA=OM\\ AD//BM\Rightarrow\widehat{OAD}=\widehat{OMB}\\ Mà.AD=BM\\ \Rightarrow\Delta OAD=\Delta OMB\left(c.g.c\right)\\ \Rightarrow\widehat{AOD}=\widehat{MOB}\\ \Rightarrow\widehat{BOD}=\widehat{AOD}+\widehat{AOB}=\widehat{MOB}+\widehat{AOB}=\widehat{AOM}=180^0\\ \Rightarrow B;O;D.thẳng.hàng\)
Tứ giác ADMB có: AB//MD, AD//MB
ADMB là hình bình hành AB=MD và ˆDAB=ˆDMBDAB^=DMB^
Tứ giác ACME có: AE//MC, AC//ME
ACME là hình bình hành \Rightarrow AC=ME
Vì xy//BC nên ˆDAC=ˆACBDAC^=ACB^
mà ˆACB=ˆEMBACB^=EMB^ nên ˆDAC=ˆEMBDAC^=EMB^
Ta có: ˆDAB=ˆDMBDAB^=DMB^
ˆDAB−ˆDAC=ˆDMB−ˆEMBDAB^−DAC^=DMB^−EMB^
hay ˆBAC=ˆDMEBAC^=DME^
Tam giác ABC=MDE (c.g.c)
Hình tự vẽ nhá :)
a) Có AD // BM (gt), DM // AB (gt) => DA = BM ; DM = AB ( t/c đoạn chắn ) (1)
AE // CM (gt); AC // EM (gt) => AE = CM ; AC = EM ( t/c đoạn chắn ) (2)
Từ (1) và (2) => AD + AE = BM + CM
=> DE = BC
Xét tam giác ABC và tam giác MDE có :
AB = DM ( cmt )
BC = DE ( cmt )
AC = EM ( cmt )
=> \(\Delta ABC=\Delta MDE\) ( c.c.c )
Tứ giác `DACM` có:
`DA` // `MC`
`DM` // `AC`
`=>` Tứ giác `DACM` là hình bình hành
`=> hat{D} = hat{C}; DA = MC`
Tương tự:
Tứ giác `AEMB` là hình bình hành có `hat{B} = hat{E}; AE = BM`
Ta có:
* `DE = DA + AE`
* `BC = BM + MC`
mà `DA = MC; AE = BM`
`=> DE = MC`
Xét tam giác `MDE` và tam giác `ACB` có:
`hat{B} = hat{E}`
` DE = MC`
`hat{D} = hat{C}`
`=>` tam giác `MDE =` tam giác `ACB` (góc - cạnh - góc)