K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét tứ giác BFHD có \(\widehat{BFH}+\widehat{BDH}=90^0+90^0=180^0\)

nên BFHD là tứ giác nội tiếp

Xét tứ giác CEHD có \(\widehat{CEH}+\widehat{CDH}=90^0+90^0=180^0\)

nên CEHD là tứ giác nội tiếp

Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=90^0+90^0=180^0\)

nên AEHF là tứ giác nội tiếp

Ta có: \(\widehat{FDH}=\widehat{FBH}\)(BFHD nội tiếp)

\(\widehat{EDH}=\widehat{ECH}\)(EHDC nội tiếp)

mà \(\widehat{FBH}=\widehat{ECH}\left(=90^0-\widehat{BAC}\right)\)

nên \(\widehat{FDH}=\widehat{EDH}\)

=>DH là phân giác của góc FDE

Ta có: \(\widehat{EFH}=\widehat{EAH}\)(AEHF nội tiếp)

\(\widehat{DFH}=\widehat{DBH}\)(BFHD nội tiếp)

mà \(\widehat{EAH}=\widehat{DBH}\left(=90^0-\widehat{ACD}\right)\)

nên \(\widehat{EFH}=\widehat{DFH}\)

=>FH là phân giác của góc EFD

Xét ΔEFD có

DH,FH là các đường phân giác

DH cắt FH tại H

Do đó: H là tâm đường tròn nội tiếp của ΔEFD

hay H cách đều ba cạnh của ΔEFD

27 tháng 7 2016

Trong 1 tam giác, 3 đường phân giác cắt nhau tại 1 điểm và điểm đó cách đều 3 cạnh của tam giác (điểm này gọi là tâm đường tròn nộ tiếp). Nối E -> F; E -> D ; D -> F. Ta sẽ chứng minh H là giao điểm 3 đường phân giác. 
Ta chứng minh được ∆AFC ~ ∆AEB(g.g) => AF/AE = AC/AB => AF/AC = AE/AB. => ta chứng minh được ∆AEF ~ ∆ABC(c.g.c) => góc AEF = góc ABC, chứng minh tương tư ta được ∆CED ~ ∆CBA => góc CED = góc ABC => góc AEF = góc CED ( = góc ABC), ta có: góc FEB = 90º - góc AEF và góc BED = 90º - góc CED, mà góc AEF = góc CED => góc FEB = góc BED => BE là phân giác góc FED => EH là phân giác góc FED, chứng minh tương tự ta được DH là phân giác góc EDF và FH là phân giác góc EFD 
=> đpcm 

8 tháng 6 2019

bạn chứng minh rõ DH là tia phân giác cho mình đc k, k rõ cho lắm

20 tháng 9 2018

Giải bài 36 trang 72 SGK Toán 7 Tập 2 | Giải toán lớp 7

Gọi IH, IK, IL lần lượt là khoảng cách từ I đến EF, DF, DE.

Theo đề bài, điểm I cách đều ba cạnh của ΔDEF ⇒ IH = IK = IL

IL = IK ⇒ I cách đều hai cạnh của góc D ⇒ I nằm trên đường phân giác của góc D.

IH = IK ⇒ I cách đều hai cạnh của góc F ⇒ I nằm trên đường phân giác của góc F.

IH = IL ⇒ I cách đều hai cạnh của góc E ⇒ I nằm trên đường phân giác của góc E.

Từ 3 điều trên suy ra I là điểm chung của ba đường phân giác của tam giác DEF.

19 tháng 4 2017

Hướng dẫn:

I nằm trong ∆DEF và cách đều ba cạnh của tam giác nên I lần lượt thuộc phân giác của các góc ˆDD^, ˆEE^, ˆFF^

Vậy I là điểm chung của ba đường phân giác của tam giác DEF

19 tháng 4 2017

I nằm trong ∆DEF và cách đều ba cạnh của tam giác nên I lần lượt thuộc phân giác của các góc ˆDD^, ˆEE^, ˆFF^

Vậy I là điểm chung của ba đường phân giác của tam giác DEF

27 tháng 8 2016

I D E F

I nằm trong ∆DEF và cách đều ba cạnh của tam giác nên I lần lượt thuộc phân giác của các góc ∠D, ∠E , ∠F

Vậy I là điểm chung của ba đường phân giác của tam giác DEF

27 tháng 8 2016

mà hình như là đại học sư phạm rồi mà.bài dễ thế mà không biết làm à