K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có 3*(a+b)= 3a+3b

5*(a-b)=5a-5b

⇒ 3a+3b=5a-5b

3b+5b=5a-3a

8b=2a

hay 4b=a

thay 4b=a vào a/b ta được

a/b=4b/b=4

Vì a/b=4 nên 3*(a+b)=4 và 5*(a-b)=4

⇒a+b= 4/3 và a-b=4/5

Vậy a= (4/3 + 4/5): 2=32/15:2=32/15x1/2=16/15

b= 4/3-16/15=4/15

17 tháng 8 2016

2.Giải:

Theo bài ra ta có:

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\) và a + b + c + d = -42

Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)

+) \(\frac{a}{2}=-3\Rightarrow a=-6\)

+) \(\frac{b}{3}=-3\Rightarrow b=-9\)

+) \(\frac{c}{4}=-3\Rightarrow c=-12\)

+) \(\frac{d}{5}=-3\Rightarrow d=-15\)

Vậy a = -6

        b = -9

        c = -12

        d = -15

17 tháng 8 2016

Bài 3:

Ta có:\(\frac{a}{2}=\frac{b}{3}\Leftrightarrow\frac{a}{10}=\frac{b}{15}\)\(\frac{b}{5}=\frac{c}{4}\Leftrightarrow\frac{b}{15}=\frac{c}{12}\)

\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)

Áp dụng tc dãy tỉ:

\(\frac{a}{10}=\frac{b}{15}=\frac{c}{20}=\frac{a+b+c}{10+15+12}=\frac{-49}{37}\)

Với \(\frac{a}{10}=\frac{-49}{37}\Rightarrow a=10\cdot\frac{-49}{37}=\frac{-490}{37}\)

Với \(\frac{b}{15}=\frac{-49}{37}\Rightarrow b=15\cdot\frac{-49}{37}=\frac{-735}{37}\)

Với \(\frac{c}{12}=\frac{-49}{37}\Rightarrow c=12\cdot\frac{-49}{37}=\frac{-588}{37}\)

 

1/ a)Cho A= 20+21+22+23+24+25 +26 .........+ 299  CMR: A chia hết cho 31 b)tìm số tự nhiên n để 3n+4 chia hết cho n -12/tìm hai số nguyên dương a, b  biết  [ a,b] = 240 và (a,b) = 163/tìm hai số nguyên dương a,b biết rằng ab=216 và (a ,b)=64/tìm hai số nguyên dương a,b biết rằng ab=180 , [a,b] =605/tìm hai số nguyên dương a,b biết a/b =2,6 và (a,b) =56/ tìm a,b biết a/b=4/5 và [ a,b ] = 1407/tìm số nguyên dương  a,b biết...
Đọc tiếp

1/ a)Cho A= 20+21+22+23+24+25 +26 .........+ 299  CMR: A chia hết cho 31 

b)tìm số tự nhiên n để 3n+4 chia hết cho n -1

2/tìm hai số nguyên dương a, b  biết  [ a,b] = 240 và (a,b) = 16

3/tìm hai số nguyên dương a,b biết rằng ab=216 và (a ,b)=6

4/tìm hai số nguyên dương a,b biết rằng ab=180 , [a,b] =60

5/tìm hai số nguyên dương a,b biết a/b =2,6 và (a,b) =5

6/ tìm a,b biết a/b=4/5 và [ a,b ] = 140

7/tìm số nguyên dương  a,b biết a+b = 128 và (a ,b)=16

8/ a)tìm a,b biết a+b = 42 và [a,b] = 72 

b)tìm a,b biết a-b =7 , [a,b] =140

9/tìm hai số tự nhiên , biết rằng tổng cúa chúng bằng 100 và có UwCLN là 10

10/ tìm 2 số tự nhiên biết ƯCLN của chúng là 5 và chúng có tích là 300

11/ chứng minh rằng nếu số nguyên tố p> 3 thì (p - 1) . (p + 1)  chia hết cho 24

12/ tìm hai số tự nhiên a,b (a < b ) biết ƯCLN (a,b ) = 12 ,  BCNN(a,b) = 180

 

2
29 tháng 10 2015

BÀI NÀY Ở ĐÂU MÀ NHIỀU THẾ BẠN!?

GIẢI CHẮC ĐÃ LẮM ĐÓ

29 tháng 10 2015

câu 1 a) thíu là chứng minh rằng a chia hết cho 31

 

HQ
Hà Quang Minh
Giáo viên
20 tháng 9 2023

a) Vì \(2a=5b\) nên \(\dfrac{a}{5}=\dfrac{b}{2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{5}=\dfrac{b}{2}=\dfrac{3a+4b}{3.5+2.4}=\dfrac{46}{23}=2\)

\( \Rightarrow a=2.5=10;\\b=2.2=4\)

Vậy \(a = 10 ; b = 4\)

b) Vì a : b : c = 2 : 4 : 5

\( \Rightarrow \dfrac{a}{2} = \dfrac{b}{4} = \dfrac{c}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\( \Rightarrow \dfrac{a}{2} = \dfrac{b}{4} = \dfrac{c}{5}= \dfrac{{a + b - c}}{{2 + 4 - 5}}= \dfrac{3}{1}=3\)

\( \Rightarrow a = 3.2=6;\\b = 3.4=12;\\c =3.5=15.\)

Vậy \(a=6;b=12;c=15\).

1 tháng 8 2017

Ta có : \(\left|3-x\right|=x-5\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=x-5\\x-3=5-x\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x-x=-5+3\\x+x=5+3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}0x=-2\left(loại\right)\\2x=8\end{cases}}\)

=> x = 4

24 tháng 2 2019

Số a là:

32:(5-3)x3=48

số b là:

32:(5-3)x5=80

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{a+b}{2+5}=\dfrac{1}{7}\)

Do đó: a=2/7; b=5/7

31 tháng 7 2023

\(1,\\ \left(a+1\right)\left(b+2\right)=5\\Vậy:\left(a+1\right);\left(b+2\right)\inƯ\left(5\right)=\left\{1;5\right\}\\ TH1:a+1=1\Rightarrow a=0;b+2=5\Rightarrow b=3\left(Loại,vì:a< b\right)\\ TH2:a+1=5\Rightarrow a=4;b+2=1\Rightarrow b=-1\left(Nhận,vì:a>b\right)\\ \Rightarrow\left(a;b\right)=\left(4;-1\right)\)

31 tháng 7 2023

\(2,\\ \left(a+1\right).\left(b+3\right)=6\\ \Rightarrow\left(a+1\right);\left(b+3\right)\inƯ\left(6\right)=\left\{1;2;3;6\right\}\\ \Rightarrow TH1:a+1=1\Rightarrow a=0;b+3=6\Rightarrow b=3\left(Loại,vì:a< b\right)\\ TH2:a+1=2\Rightarrow a=1;b+3=3\Rightarrow b=0\left(Nhận,vì:a>b\right)\\ TH3:a+1=3\Rightarrow a=2;b+3=2\Rightarrow b=-1\left(Nhận,vì:a>b\right)\\ TH4:a+1=6\Rightarrow a=5;b+3=1\Rightarrow b=-2\left(Nhận,vì:a>b\right)\\ Vậy:\left(a;b\right)=\left(1;0\right).hoặc\left(a;b\right)=\left(2;-1\right).hoặc\left(a;b\right)=\left(5;-2\right)\)

19 tháng 10 2021

Ta có: \(\dfrac{a}{b}=\dfrac{3}{5}=\dfrac{a}{3}=\dfrac{b}{5}\)

Dựa vào tính chất dãy tỉ số bằng nhau, ta được:

\(\dfrac{b-a}{5-3}=\dfrac{-16}{2}=-8\)

Vậy \(\dfrac{a}{3}=\dfrac{b}{5}=-8\)

=> \(\left\{{}\begin{matrix}a=-24\\b=-40\end{matrix}\right.\)