cko tam giác AOB vuông tại O với đường cao OM .Hãy giải thích vì sao ta có đẳng thức AB.OM=OA.OB
Cko tam giác ABC và đường trung tuyên AM .Chứng minh SAMB=SAMC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có cách tính diện tích ΔAOB với đường cao OM và cạnh đáy AB:
Ta lại có cách tính diện tích ΔAOB vuông với hai cạnh góc vuông OA, OB là:
Kẻ đường cao AH
Ta có: SAMB = 0.5.BM.AH
SAMC = 0.5.CM.AH
Mà BM = CM (gt)
Þ SAMB = SAMC (ĐPCM)
Kẻ đường cao AH.
Ta có:
Mà BM = CM (vì AM là trung tuyến)
⇒ SAMB = SAMC (đpcm).
a: Xét tứ giác ADHP có
AD//HP
AP//HD
góc PAD=90 độ
Do đó: ADHP là hình chữ nhật
=>AH=DP
b: ΔABC vuông tại A có AM là đường trung tuyến
nên MA=1/2BC=MC=MB
Xét ΔMAC có MA=MC
nên ΔMAC cân tại M
c: góc QAP+góc QPA
=góc MAC+góc APD
=góc MCA+góc AHD
=góc ACB+góc ABC=90 độ
=>ΔQAP vuông tại Q
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB chung
Do đó: ΔAHB=ΔAKC
Suy ra: HB=KC
Xét ΔKBC vuông tại K và ΔHCB vuông tại H có
BC chung
KC=HB
Do đó: ΔKBC=ΔHCB
Suy ra: \(\widehat{OCB}=\widehat{OBC}\)
=>ΔOBC cân tại O
=>OB=OC
mà AB=AC
nên AO là đường trung trực của BC
hay AO\(\perp\)BC
b: Xét ΔAOB và ΔAOC có
AO chung
OB=OC
AB=AC
Do đó ΔAOB=ΔAOC
SUy ra: \(\widehat{OAB}=\widehat{OAC}=30^0\)
=>\(\widehat{BAC}=60^0\)
hay ΔABC đều
c: Đề sai rồi bạn
mỗi câu là một bài nha
câu 2
Dựng AH là đường cao của ΔABC, khi đó ΔABM,ΔAMC chung chiều cao AH. Ta có:
SAMB=12BM.AH
SAMC=12CM.AH
mà BM=CMBM=CM (vì AM là đường trung tuyến)
Vậy SAMB=SAMC.
S là diện -.-