K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2017

Giả sử cả ba BĐT đều đúng, khi đó a(1−b)b(1−c)c(1−a)>164a(1−b)b(1−c)c(1−a)>164

Nhưng theo BĐT CauChy thì a(1−a)≤(a+1−a2)2=14a(1−a)≤(a+1−a2)2=14, tương tự ta có

a(1−b)b(1−c)c(1−a)≤164a(1−b)b(1−c)c(1−a)≤164, mâu thuẩn

Giả sử a(1-b),b(1-c),c(1-a)>1/4 

=> a(1-b).b(1-c).c(1-a)>(1/4)3

=> a(1-a).b(1-b).c(1-c)>(1/4)^3 

Ta có a(1-a)=1/4-(1/2-a)2<1/4 

CMTT b(1-b), c(1-c) <1/4 

=> a(1-b).b(1-c).c(1-a)<(1/4)3 trái với giả sử  

=> 1 trong các BĐT sai

19 tháng 5 2017

-Schwarz: 1/(a+b)+1/(a+c)+1/(b+c) >/ 9/2(a+b+c)=9/2=4,5>4 -> đpcm 

-ta có VT=4(1-a)(1-b)(1-c)=4(b+c)(1-b)(1-c)=[4(b+c)(1-c)](1-b)

Áp dụng bdt cauchy dạng 4ab </ (a+b)^2 

VT </ (b+c+1-c)^2(1-b)=(b+1)^2(1-b)=(b+1)[(1+b)(1-b)]=(b+1)(1-b^2) </ 1+b = a+2b+c (đpcm) 

4 tháng 12 2017

giả sử a(1-b),b(1-c),c(1-a) >1/4

=> a(1-a)b(b-1)c(c-1)>1/4^3

ma a(1-a)=a-a^2=1/4- (a-1/2)^2<=1/4

tuong tu....

=> a(1-a)b(b-1)c(c-1)=<1/4^3(trai voi gia su)

Vay trong 3 h a(1-b),b(1-c),c(1-a) co it nhat 1 so < 1/4

4 tháng 12 2017

 Ta có 1/a + 1/b + 1/c = (bc + ac + ac)/abc = ab + bc + ca 
=> a + b + c = ab + bc + ca 
<=> a + b + c - ab - bc - ca = 0 
<=> a + b + c - ab - bc - ac + abc - 1 = 0 
<=> (a - ab) + (b - 1) + (c - bc) + (abc - ac) = 0 
<=> -a(b - 1) + (b - 1) - c(b - 1) + ac(b - 1) = 0 
<=> (b - 1)(-a + 1 -c + ac) = 0 
<=> (b - 1)[ (-a + 1) + (ac - c) ] = 0 
<=> (b - 1)[ -(a - 1) + c(a - 1) ] = 0 
<=> (a - 1)(b - 1)(c - 1) = 0 
<=> a - 1 = 0 hoặc b - 1 = 0 hoặc c - 1 = 0 
<=> a = 1 hoặc b = 1 hoặc c = 1 

7 tháng 8 2017

Áp dụng BĐT \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\), ta có:

\(\dfrac{4}{2a+b+c}+\dfrac{4}{a+2b+c}+\dfrac{4}{a+b+2c}\)

\(\le\dfrac{1}{4}\left(\dfrac{4}{a+b}+\dfrac{4}{a+c}+\dfrac{4}{a+b}+\dfrac{4}{c+b}+\dfrac{4}{a+c}+\dfrac{4}{b+c}\right)\)

\(=\dfrac{2}{a+b}+\dfrac{2}{a+c}+\dfrac{2}{b+c}\)

\(\le\dfrac{1}{4}\left(\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{a}+\dfrac{2}{c}+\dfrac{2}{b}+\dfrac{2}{c}\right)\)

\(=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\left(\text{đ}pcm\right)\)

Dấu "=" xảy ra khi a = b = c

8 tháng 8 2017

a)\(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\)

\(\Leftrightarrow a^2-a+\frac{1}{4}+b^2-b+\frac{1}{4}+c^2-c+\frac{1}{4}\ge0\)

\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2+\left(b-\frac{1}{2}\right)^2+\left(c-\frac{1}{2}\right)^2\ge0\)

Xảy ra khi \(a=b=c=\frac{1}{2}\)

b)Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(1+1\right)\left(a^4+b^4\right)\ge\left(a^2+b^2\right)^2\Rightarrow a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}\)

\(\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(\frac{\left(a+b\right)^2}{2}\right)^2}{2}=\frac{\frac{\left(a+b\right)^2}{4}}{2}>\frac{\frac{1}{4}}{2}=\frac{1}{8}\)

c)\(BDT\Leftrightarrow\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\ge0\)

Khi a=b