Cho tam giác ABC có AB=AC.Gọi M là trung điểm cạnh BC
1) Chứng minh tam giác ABM= tam giác ACM
2) Chứng minh AM vuông góc BC
3) Trên cạnh BA lấy điểm D, trên cạnh CA lấy điểm E sao cho BD=CE
Chứng minh tam giác BDM= tam giác xem
( vẽ hình)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3) AB = AC => ABC cân tại A => AM là đường phân giác => góc MAD = góc MAE
Xét tam giác ADM và tam giác AEM
Cạnh AM chung
AD = AE( giả thiết)
góc MAD = góc MAE
=> tam giác ADM= tam giác AEM (c.g.c)
1+2) Ta có : AB = AC, BM = CM → ΔABM =Δ ACM(c.c.c)
→ˆAMB=ˆAMC
Mà ˆAMB+ˆAMC = 180o→ˆAMB=ˆAMC=90o
→AM⊥BC
Ta có :
ADAB = AEAC → DE//BC
Vì CF//ME → ˆMEH=ˆHCF
Mà ˆEHM=ˆCHF,EH=CH→ΔEHM=ΔCHF(g.c.g)
→MH=HF→ΔEHF=ΔCHM(c.g.c)→ˆHEF=ˆHCF
→EF//BC
Mà DE//BC→D,E,F thẳng hàng
a: Xét ΔABM và ΔADM có
AB=AD
AM chung
BM=DM
Do đó: ΔABM=ΔADM
a,Xét \(\Delta ABM\)và\(\Delta ACM\)có:
AB = AC (gt), MB = MC (gt), AM chung
\(\Rightarrow\Delta ABM=\Delta ACM\left(c-c-c\right)\)(đpcm)
b,Théo câu a, \(\Delta ABM=\Delta ACM\Rightarrow\widehat{AMB}=\widehat{AMC}\)
Mà \(\widehat{AMB}+\widehat{AMC}=180^o\Rightarrow\widehat{AMB}=90^o\)=> AM vuông góc với BC (đpcm)
c,Xét \(\Delta EBC\)và\(\Delta FCB\)có:
BE = CF (gt), \(\widehat{EBC}=\widehat{FCB}\left(gt\right)\),BC chung
=> \(\Delta EBC=\Delta FCB\left(c-g-c\right)\)(đpcm)
d, \(gt\Rightarrow AE=AF\Rightarrow\Delta AEF\)cân tại A\(\Rightarrow\widehat{AEF}=180^o-\widehat{\frac{A}{2}}\)
\(gt:AB=AC\Rightarrow\Delta ABC\)cân tại A\(\Rightarrow\widehat{ABC}=180^o-\widehat{\frac{A}{2}}\)
Suy ra: \(\widehat{AEF}=\widehat{ABC}\)mà 2 góc này nằm ở vị trí đồng vị \(\Rightarrow\)EF//BC (đpcm)
a. vì AB=AC => tam giác ABC là tam giác cân
Xét tam giác ABC ta có :
AB=AC (gt)
AM cạnh chung
BM=CM (tam giác ABC là tam giác cân)
=> tam giác ABM = tam giác ACM ( c.c.c )