số có dạng abcabc có phải là số chính phương không?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có abcabc = 1001*abc (1)
Để abcabc là số chính phương => abcabc = 1001*1001k^2 = (1001k)^2 (2)
Từ (1) và (2) => abc = 1001k^2 => abc chia hết cho 1001
Mà abc có 3 chữ số, 1001 có 4 chữ số => abc không chia hết cho 1001
=> abcabc không là số chính phương
a) Ta có: abab = ab.101
Để abab là số chính phương thì ab chỉ có thể là 101
Mà ab là số có hai chữ số
→ abab không phải là số chính phương
b) Ta có: abcabc = abc.1001
Để abcabc là số chính phương thì abc chỉ có thể là 1001
Mà abc là số có 3 chữ số
→ abcabc không phải là số chính phương
c) Ta có: ababab = ab.10101
Để ababab là số chính phương thì ab chỉ có thể bằng 10101
Mà ab có 2 chữ số
→ ababab không phải là số chính phương
Vậy abab; abcabc; ababab không phải là số chính phương
mik làm thế này có đúng không nhỉ ?
a) Ta có :
abab = ab . 101
Để abab là số chính phương thì ab chỉ có thể bằng 101.
Mà ab là số có hai chữ số
=> abab không phải là số chính phương
b) Ta có :
abcabc = abc . 1001
Để abcabc là số chính phương thì abc chỉ có thể bằng 1001.
Mà abc là số có 3 chữ số
=> abcabc không phải là số chinh phương
c) Ta có :
ababab = ab . 10101
Để ababab là số chính phương thì ab chỉ có thể bằng 10101.
Mà ab là số có hai chữ số.
=> ababab không phải là số chính phương.
Kết luận : abab ; abcabc ; ababab ko phải là số chính phương (đpcm)