Cho a,b là các số thực thỏa mãn a>b. Chứng minh rằng:
\(\sqrt{a^2-b^2}+\sqrt{ab-b^2}>a\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2a)với a,b,c là các số thực ta có
\(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{1}{4}\left(a+b\right)^2\)
\(\Rightarrow\sqrt{a^2-ab+b^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left|a+b\right|\)
tương tự \(\sqrt{b^2-bc+c^2}\ge\frac{1}{2}\left|b+c\right|\)
tương tự \(\sqrt{c^2-ca+a^2}\ge\frac{1}{2}\left|a+c\right|\)
cộng từng vế mỗi BĐT ta được \(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\ge\frac{2\left(a+b+c\right)}{2}=a+b+c\)
dấu "=" xảy ra khi và chỉ khi a=b=c
Áp dụng bđt Bunhiacopski ta có
\(\sqrt{c}.\sqrt{a-c}+\sqrt{c}.\sqrt{b-c}\le\sqrt{\left(\sqrt{c}\right)^2+\left(\sqrt{b-c}\right)^2}+\sqrt{\left(\sqrt{c}\right)^2+\left(\sqrt{a-c}\right)^2}.\)
\(\Leftrightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{c+b-c}.\sqrt{c+a-c}=\sqrt{ab}\left(đpcm\right)\)
Bu-nhi-a-cốp-ski: (ab+cd)2 \(\le\)( a2 + c2 )( b2 + d2 ) mà bạn.
Áp dụng bất đẳng thức Cô - si, ta có:
\(a\sqrt{b-1}=a\sqrt{\left(b-1\right).1}\le a.\frac{b-1+1}{2}=\frac{ab}{2}\)(1)
\(b\sqrt{a-1}=b\sqrt{\left(a-1\right).1}\le b.\frac{a-1+1}{2}=\frac{ab}{2}\)(2)
Từ (1) và (2) suy ra \(a\sqrt{b-1}+b\sqrt{a-1}\le ab\)
\(\Rightarrow\frac{6}{a\sqrt{b-1}+b\sqrt{a-1}}\ge\frac{6}{ab}\)(Đẳng thức xảy ra khi a = b = 2)
\(VT=\frac{6}{a\sqrt{b-1}+b\sqrt{a-1}}+\sqrt{3ab+4}\ge\frac{6}{ab}+\sqrt{3ab+4}\)
\(=\frac{18}{3ab}+\sqrt{3ab+4}\)
Đặt \(t=\sqrt{3ab+4}\Rightarrow3ab=t^2-4\). Khi đó\(VT\ge\frac{18}{t^2-4}+t=\frac{18}{\left(t+2\right)\left(t-2\right)}+\frac{3}{4}\left(t-2\right)\)
\(+\frac{1}{4}\left(t+2\right)+1\ge3\sqrt[3]{18.\frac{3}{4}.\frac{1}{4}}+1=\frac{11}{2}\)
Đẳng thức xảy ra khi t = 4 hay a = b = 2
Áp dụng BĐT AM-GM ta có:
\(\sqrt{b-1}=\sqrt{1\left(b-1\right)}\le\frac{1+b-1}{2}=\frac{b}{2}\Rightarrow a\sqrt{b-1}\le\frac{ab}{2}\)
Tương tự với \(b\sqrt{a-1}\)ta được
\(\frac{6}{a\sqrt{b-1}+b\sqrt{a-1}}+\sqrt{3ab+4}\ge\frac{6}{ab}+\sqrt{3ab+4}=\frac{18}{3ab}+\sqrt{3ab+4}\)
Vậy ta cần chứng minh
\(\frac{18}{3ab}+\sqrt{3ab+4}\ge\frac{11}{2}\)
Vì a,b đều lớn hơn 1 nên ta đặt \(t=\sqrt{3ab+4}>0\)khi đó bđt cần chứng minh trở thành
\(\frac{18}{t^2-4}+t\ge\frac{11}{2}\)
<=> \(\frac{\left(2t+5\right)\left(t-4\right)^2}{t^2-4}\ge0\)
Vậy t>=4
BĐT xảy ra khi a=b=1
Có ab > 2013a + 2014b <=> 1 > 2013/b + 2014/a (vì a,b >0 )
\(\Leftrightarrow a+b>\frac{2013\left(a+b\right)}{b}+\frac{2014\left(a+b\right)}{a}=2013+2014+\frac{2013a}{b}+\frac{2014b}{a}\)
Mà \(\frac{2013a}{b}+\frac{2014b}{a}\ge2\sqrt{2013\cdot2014}\)
\(\Rightarrow a+b>2013+2014+2\sqrt{2013\cdot2014}=\left(\sqrt{2013}+\sqrt{2014}\right)^2\)
=> đpcm
Tích cho mk nhoa !!!! ~~~
1.Ta có: \(c+ab=\left(a+b+c\right)c+ab\)
\(=ac+bc+c^2+ab\)
\(=a\left(b+c\right)+c\left(b+c\right)\)
\(=\left(b+c\right)\left(a+b\right)\)
CMTT \(a+bc=\left(c+a\right)\left(b+c\right)\)
\(b+ca=\left(b+c\right)\left(a+b\right)\)
Từ đó \(P=\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(c+a\right)\left(a+b\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\)
Ta có: \(\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}\right)\)( theo BĐT AM-GM)
CMTT\(\Rightarrow P\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{b}{a+b}+\frac{c}{b+c}+\frac{a}{a+b}\right)\)
\(\Rightarrow P\le\frac{1}{2}.3\)
\(\Rightarrow P\le\frac{3}{2}\)
Dấu"="xảy ra \(\Leftrightarrow a=b=c\)
Vậy /...
\(\frac{a+1}{b^2+1}=a+1-\frac{ab^2-b^2}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}\)
\(=a+1-\frac{b\left(a+1\right)}{2}=a+1-\frac{ab+b}{2}\)
Tương tự rồi cộng lại:
\(RHS\ge a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}\)
\(\ge a+b+c+3-\frac{\frac{\left(a+b+c\right)^2}{3}+a+b+c}{2}=3\)
Dấu "=" xảy ra tại \(a=b=c=1\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3
Chứng minh rằng với mọi k > 0 ta luôn có....
.
Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3
Chứng minh rằng với mọi k > 0 ta luôn có
Giai
TS + 2 và - 2/(a-b)
SD BĐT Cô si => đpcm
"=" a = (\(\frac{\sqrt{3}+1}{\sqrt{2}}\)) ; b = \(\frac{\sqrt{3}\text{-}1}{\sqrt{2}}\) và ngược lại