CHO MÌNH HỎI LÀM CÁCH NÀO ĐỂ VẼ CHIỀU CAO CỦA TAM GIÁC VUÔNG
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hai tg vuông AHB~AHC => AH/BH=CH/AH=AC/AB
nhưng AH=2HM ; BH=2HN -gt- nên AV/BH=..=AC/AB=HM / HN
do đo ta có hai tg vuông CHM & AHN cũng ~ với nhau ( ~ là đồng dạng)
suy ra góc ^HAN=^HCM<=> CM và AN là hai cạnh tương ứng của hai góc =mà cặp cạnh kia CH đã vuông góc vơi AH
hoặc MN//AB ta cứ cộng các góc(=) dồn lại cũng ra ^NCM+^MNC+^MNA=!V
ΔDEC vuông tại D có DK là đường cao
nên CK/KE=CD^2/DE^2
CH/HB=CA^2/AB^2
Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc C chung
=>ΔCDE đồng dạng với ΔCAB
=>CD/CA=DE/AB
=>CD/DE=CA/AB
=>CH/HB=CK/KE
=>HK//EB
Vì\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
Mà\(\widehat{A}=90^o,\widehat{C}=30^o\)
nên \(\widehat{B}=180^o-\widehat{A}-\widehat{C}\)
\(\widehat{B}=180-90-30=60^o\)
Vì góc C đối xứng AB, Góc B đối xứng với AC mà góc B >góc C
nên AC>AB
\(\widehat{BAH}=180-60-90=30\)
Xét \(\Delta ABH\)Và \(\Delta AIH\)
Có:\(\widehat{AHI}=\widehat{AHB}=90^o\)
\(HB=HI\left(gt\right)\)
\(AH\)chung
\(\Rightarrow\)=nhau theo trường hợp (c.g.c)
suy ra \(\widehat{IAH}=\widehat{BAH}=30^o\)(2 góc tương ứng)
Mà \(\widehat{IAH}+\widehat{BAH}=30+30=60^o\)
\(\Delta\)ABI có 2 góc 60 độ là tam giác đều
câu c hình như bị sai
Diện tích hình tam giác là :
15 x 15 = 225 ( dm2 )
Cạnh đáy hình tam giác đó là :
225 x 2 : 100 = 4,5 ( dm )
Đáp số : 4,5 dm.
Dùng eke
Fl TikTok mình:@baoxinh_123
thẳng xuống ở trong hình nha cậu :333