Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có AB<AC
mà HB là hình chiếu của AB trên BC
và HC là hình chiếu của AC trên BC
nên HB<HC
b: Xét ΔABI có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔABI cân tại A
a: Xét ΔABC có AB<AC
mà HB là hình chiếu của AB trên BC
và HC là hình chiếu của AC trên BC
nên HB<HC
b: Xét ΔABI có
AH là đường cao
AH là đường trung tuyến
Do đó:ΔABI cân tại A
a: \(\widehat{B}=90^0\)
Xét ΔABC có \(\widehat{C}< \widehat{A}< \widehat{B}\)
nên AB<BC<AC
b: Xét ΔBAC có
BA<BC
mà AH là hình chiếu của BA trên AC
và CH là hình chiếu của BC trên AC
nên AH<CH
tự vẽ hình nha!^^
1/a/ vì AB<AC(gt)\(\Rightarrow\)\(\widehat{B}< \widehat{C}\)(theo tính chất)
b)ta có:\(\widehat{BAH}+\widehat{AHB}+\widehat{B}=180\)độ
\(\widehat{CAH}+\widehat{AHC}+\widehat{C}=180\)độ
mà \(\widehat{B}< \widehat{C}\)(theo câu a)) và \(\widehat{AHB}=\widehat{AHC}=90\)độ
\(\Rightarrow\widehat{BAH}< \widehat{CAH}\)\(\Rightarrow HB< HC\)(tính chất)
2/a/\(Xét\Delta ABIva\Delta HBIcó:\)
góc BAI=BHI=90 độ
BỊ chung;góc B1=góc B2
Vậy \(\Delta ABI=\Delta HBI\left(ch-gn\right)\)
b/ vì IA=IH(do tgiac ABI=tgiac HBI)
Vậy tam giác AIH cân tại I
c/Vì AB=AH(do tam giác BIA= tam giác BIH)
\(\Rightarrow\)tam giác BAH cân tại B
mà BỊ là đường phân giác nên suy ra cũng là đường trung trực (theo tính chất của các đường trong tam giác cân)
\(\Rightarrow\)BI là đường trung trực của đoạn thẳng AH(đpcm)
Diễn giải:
- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.
Ví dụ 1:
Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75
Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9
- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.
a) Xét ΔABC có
BC>AB(15cm>7cm)
mà góc đối diện với cạnh BC là \(\widehat{BAC}\)
và góc đối diện với cạnh AB là \(\widehat{ACB}\)
nên \(\widehat{BAC}>\widehat{ACB}\)(Định lí quan hệ giữa cạnh và góc đối diện trong tam giác)
a: Xét ΔABC có AB<BC
nên \(\widehat{ACB}< \widehat{BAC}\)
b: Xét ΔAMB có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔAMB cân tại A
mà \(\widehat{B}=60^0\)
nên ΔAMB đều
A) XÉT \(\Delta ABC\)VUÔNG TẠI A
\(BC^2=AB^2+AC^2\left(PYTAGO\right)\)
THAY \(BC^2=3^2+4^2\)
\(BC^2=9+16\)
\(BC^2=25\)
\(\Rightarrow BC=\sqrt{25}=5\left(cm\right)\)
XÉT \(\Delta ABC\) CÓ
\(BC>AC>AB\left(5>4>3\right)\)
\(\Rightarrow\widehat{A}>\widehat{B}>\widehat{C}\)QUAN HỆ GIỮA CẠNH VÀ GÓC ĐỐI DIỆN
B) XÉT \(\Delta BAH\)VÀ\(\Delta BDH\)CÓ
BH LÀ CẠNH CHUNG
\(\widehat{H_2}=\widehat{H_1}=90^o\)
\(AH=DH\left(GT\right)\)
=>\(\Delta BAH\)=\(\Delta BDH\)(C-G-C)
=> AB = BD( ĐPCM)
C) XÉT \(\Delta BAH\)VÀ\(\Delta EDH\)CÓ
\(BH=EH\left(GT\right)\)
\(\widehat{H_2}=\widehat{H_4}\left(Đ^2\right)\)
\(AH=DH\left(GT\right)\)
=>\(\Delta BAH\)=\(\Delta EDH\)(C-G-C)
=>\(\widehat{A_1}=\widehat{D_2}\)HAI GÓC TƯƠNG ỨNG
HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU
=> DE//AB
Vì\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
Mà\(\widehat{A}=90^o,\widehat{C}=30^o\)
nên \(\widehat{B}=180^o-\widehat{A}-\widehat{C}\)
\(\widehat{B}=180-90-30=60^o\)
Vì góc C đối xứng AB, Góc B đối xứng với AC mà góc B >góc C
nên AC>AB
\(\widehat{BAH}=180-60-90=30\)
Xét \(\Delta ABH\)Và \(\Delta AIH\)
Có:\(\widehat{AHI}=\widehat{AHB}=90^o\)
\(HB=HI\left(gt\right)\)
\(AH\)chung
\(\Rightarrow\)=nhau theo trường hợp (c.g.c)
suy ra \(\widehat{IAH}=\widehat{BAH}=30^o\)(2 góc tương ứng)
Mà \(\widehat{IAH}+\widehat{BAH}=30+30=60^o\)
\(\Delta\)ABI có 2 góc 60 độ là tam giác đều
câu c hình như bị sai