K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2024

Vì bạn lạp thôi chứ chưa mua nên không có víp 🤫🤫🤫

 

A=(x+y)^3+3(x+y)^2*z+3(x+y)*z^2+z^3-(x+y)^3+3(x+y)^2*z^2-3(x+y)*z^2+z^3-(x-y+z)^3+(x-y-z)^3

=6(x+y)^2+2z^3+(x-y)^3-3(x-y)^2*z+3(x-y)*z^2-z^3-(x-y)^3-3*(x-y)^2*z-3*(x-y)*z^2-z^3

=6(x+y)^2+2z^3-6(x-y)^2-2z^3=0

27 tháng 7 2023

cam on nha...

20 tháng 12 2016

giup mik nha tí 30p nữa mình on cam on mnlolang

20 tháng 12 2016

Hình như ghi sai đề hay sao í

30 tháng 11 2017

chịu mới có lớp 7

AH
Akai Haruma
Giáo viên
16 tháng 9 2023

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.

Ta sử dụng ẩn phụ:

\(\hept{\begin{cases}a=x+y-z\\b=y+z-x\\c=x+z-y\end{cases}}\)=> x+y+z=a+b+c

Khi đó :

A= (x+y+z)^3-(x+y-z)^3-(-x+y+z)^3-(x-y+z)^3=(a+b+c)^3+a^3+b^3+c^3=3(a+b)(b+c)(c+a)=3*2y*2z*2x=24xyz

25 tháng 9 2021

Đặt x+y−z=a;x−y+z=b;−x+y+z=cx+y−z=a;x−y+z=b;−x+y+z=c thì a + b + c = x + y + z

A=(a+b+c)3−a3−b3−c3A=(a+b+c)3−a3−b3−c3

=(a+b+c−a)[(a+b+c)2+a(a+b+c)+a2]−(b3+c3)=(a+b+c−a)[(a+b+c)2+a(a+b+c)+a2]−(b3+c3)

=(b+c)[a2+b2+c2+2(ab+bc+ca)+(a2+ab+ac)+a2]−(b+c)(b2−bc+c2)=(b+c)[a2+b2+c2+2(ab+bc+ca)+(a2+ab+ac)+a2]−(b+c)(b2−bc+c2)=(b+c)[3a2+b2+c2+3ab+2bc+3ac−b2+bc−c2]=(b+c)[3a2+b2+c2+3ab+2bc+3ac−b2+bc−c2]

=(b+c)(3a2+3ab+3bc+3ca)=(b+c)(3a2+3ab+3bc+3ca)

=(b+c)(3a(a+b)+3c(a+b))=3(a+b)(b+c)(c+a)

19 tháng 12 2020

Ta có: x+y+z=0

\(\Leftrightarrow\left(x+y+z\right)^2=0\)

\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz=0\)(1)

Ta có: \(K=\dfrac{x^2+y^2+z^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)

\(=\dfrac{x^2+y^2+z^2}{x^2-2xy+y^2+y^2-2yz+z^2+z^2-2xz+x^2}\)

\(=\dfrac{x^2+y^2+z^2}{3x^2+3y^2+3z^2-x^2-y^2-z^2-2xy-2yz-2xz}\)

\(=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)-\left(x^2+y^2+z^2+2xy+2yz-2xz\right)}\)

\(=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)}=\dfrac{1}{3}\)

Vậy: \(K=\dfrac{1}{3}\)

19 tháng 12 2020

\(K=\dfrac{x^2+y^2+z^2}{2\left(x^2+y^2+z^2\right)-2\left(xy+yz+zx\right)}\)

\(K=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2}=\dfrac{1}{3}\)