rút gọn biểu thức :
P=1+5^2+5^4+5^6+...+5^98
GIÚP MK NHANH NHÉ CÁC BẠN!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2\sqrt{3}+\sqrt{5}\right).\sqrt{3}-\sqrt{60}\)
\(=\)\(2\sqrt{3}.\sqrt{3}+\sqrt{5}.\sqrt{3}-\sqrt{60}\)
\(=\)\(6+\sqrt{15}-\sqrt{60}\)
\(=\)\(6-\sqrt{15}\)
\(\left(2\sqrt{3}+\sqrt{5}\right)\sqrt{3}-\sqrt{60}\)
=\(6+\sqrt{15}-\sqrt{2^2.15}\)
=\(6+\sqrt{15}-2\sqrt{15}\)
=\(6-\sqrt{15}\)
k mk nha
a)B = ( 2 + 4 + 6 + 8 +........+ 2014 ) - ( 3 + 5 + 7 + 9 +.......+ 2011 )
= 1015056 - 1012035
= 3021
Mk nhanh nhất đó
\(A=\left(\frac{1}{1-x}+\frac{2}{x+1}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\left(x\ne\pm1;x\ne\frac{1}{2}\right)\)
\(\Leftrightarrow A=\left(\frac{-1}{x-1}+\frac{2}{x+1}+\frac{5-x}{x^2-1}\right)\cdot\frac{\left(x-1\right)\left(x+1\right)}{1-2x}\)
\(\Leftrightarrow A=\left[\frac{-x-1}{\left(x-1\right)\left(x+1\right)}+\frac{2x-2}{\left(x-1\right)\left(x+1\right)}+\frac{5-x}{\left(x-1\right)\left(x+1\right)}\right]\cdot\frac{\left(x-1\right)\left(x+1\right)}{1-2x}\)
\(\Leftrightarrow A=\frac{-x-1+2x-2+5-x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{\left(x-1\right)\left(x+1\right)}{2}\)
\(\Leftrightarrow A=\frac{2\left(x-1\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}=1\)
vậy \(A=1\left(x\ne\pm1;x\ne\frac{1}{2}\right)\)
\(A=\left(\frac{1}{1-x}+\frac{2}{x+1}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}.\)
\(A=\left(\frac{x+1}{\left(1-x\right)\left(x+1\right)}+\frac{2\left(1-x\right)}{\left(x+1\right)\left(1-x\right)}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}.\)
\(A=\left(\frac{x+1}{\left(1-x\right)\left(x+1\right)}+\frac{2\left(1-x\right)}{\left(x+1\right)\left(1-x\right)}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}.\)
\(A=\left(\frac{x+1+2-2x-5+x}{1-x^2}\right):\frac{1-2x}{x^2-1}.\)
\(A=\left(\frac{-2}{1-x^2}\right):\frac{1-2x}{x^2-1}.\)
\(A=\frac{2}{x^2-1}:\frac{1-2x}{x^2-1}.\)
\(A=\frac{2}{x^2-1}\cdot\frac{^2-1}{1-2x}=\frac{2}{1-2x}\)ĐK: x khác 1/2
P=1+52+54+56+...+598
=>52.P=P=52+54+56+...+598+5100
=>25P-P=24P=P=52+54+56+...+598+5100-(1+52+54+56+...+598)
=>24P=5100-1
=>P=\(\frac{5^{100}-1}{24}.\)