K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12

\(\left(x-4\right)^2-3=1\\ \left(x-4\right)^2=1+3\\ \left(x-4\right)^2=4\\ \left(x-4\right)^2=\left(\pm2\right)^2\\ \left[{}\begin{matrix}x-4=2\\x-4=-2\end{matrix}\right.\\ \left[{}\begin{matrix}x=2+4\\x=-2+4\end{matrix}\right.\\ \left[{}\begin{matrix}x=6\\x=2\end{matrix}\right.\)

14 tháng 12

(x - 4)^2 - 3 = 1

(x - 4)^2 = 1 + 3

(x- 4)^2 = 4

(x - 4)^2 = 2^2

x - 4 = 2

x = 2 + 4

x = 6

Vậy x = 6

 

Bài 1:

Ta có: \(4-2\left(x+1\right)=2\)

\(\Leftrightarrow2\left(x+1\right)=2\)

\(\Leftrightarrow x+1=1\)

hay x=0

Bài 2: 

Ta có: \(\left|2x-3\right|-1=2\)

\(\Leftrightarrow\left|2x-3\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)

24 tháng 4 2022

chưa biết

25 tháng 12 2022

\(3\left(x-2\right)+4\left(x-1\right)=25\) 

\(\Leftrightarrow3x-6+4x-4=25\) 

\(\Leftrightarrow7x=35\) 

\(\Leftrightarrow x=5\)

25 tháng 12 2022

\(\left(5x-3\right)\left(x-2\right)=\left(x-1\right)\left(x-2\right)\) 

\(\Leftrightarrow\left(5x-3\right)\left(x-2\right)-\left(x-1\right)\left(x-2\right)=0\) 

\(\Leftrightarrow\left(x-2\right)\left(5x-3-x+1\right)=0\) 

\(\Leftrightarrow\left(x-2\right)\left(4x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\4x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-1}{2}\end{matrix}\right.\)

`@` ` \text {Ans}`

`\downarrow`

`a,`

`1/4+3/4*x=3/2-x`

`=> 1/4 + 3/4x - 3/2 + x = 0`

`=> (1/4 - 3/2) + (3/4x + x) = 0`

`=> -5/4 + 7/4x = 0`

`=> 7/4x = 5/4`

`=> x = 5/4 \div 7/4`

`=> x = 5/7`

Vậy, `x=5/7`

`b,`

`3/5*x-1/4=1/10*x-1/2`

`=> 3/5x - 1/4 - 1/10x + 1/2 = 0`

`=> (3/5x - 1/10x) + (-1/4 + 1/2)=0`

`=> 1/2x + 1/4 = 0`

`=> 1/2x = -1/4`

`=> x = -1/4 \div 1/2`

`=> x = -1/2`

Vậy, `x=-1/2`

`c,`

`3x-3/5=x-1/4`

`=> 3x - 3/5 - x + 1/4 = 0`

`=> (3x - x) - (3/5 - 1/4) = 0`

`=> 2x - 7/20 = 0`

`=> 2x = 0,35`

`=> x = 0,35 \div 2`

`=> x = 7/40`

Vậy, `x=7/40`

`d,`

`3/2*x-2/5=1/3*x-1/4`

`=>  3/2x - 2/5 - 1/3x + 1/4 = 0`

`=> (3/2x - 1/3x) - (2/5 - 1/4) = 0`

`=> 7/6x - 3/20 = 0`

`=> 7/6x = 3/20`

`=> x = 3/20 \div 7/6`

`=> x = 9/70`

Vậy, `x=9/70`

`@` `\text {Kaizuu lv uuu}`

25 tháng 12 2022

Ko thấy j hết á bạn

25 tháng 12 2022

1)

\(3\left(x-2\right)+4\left(x-1\right)=25\)

\(3x-6+4x-4=25\)

\(7x-10=25\\ 7x=35\\ x=5\)

2)

\(\left(5x-3\right)\left(x-2\right)=\left(x-1\right)\left(x-2\right)\)

\(\left(5x-3\right)\left(x-2\right)-\left(x-1\right)\left(x-2\right)=0\)

\(\left(x-2\right)\left(5x-3-x+1\right)=0\)

\(\left(x-2\right)\left(4x-2\right)=0\)

\(=>\left[{}\begin{matrix}x-2=0\\4x-2=0\end{matrix}\right.=>\left[{}\begin{matrix}x=2\\x=\dfrac{1}{2}\end{matrix}\right.\)

3)

\(\left(x-2\right)^2=4\left(x-1\right)^2\)

\(x^2-4x+4=4\left(x^2-2x+1\right)\)

\(x^2-4x+4=4x^2-8x+4\)

\(x^2-4x+4-4x^2+8x-4=0\)

\(-3x^2+4x=0\)

\(x\left(-3x+4\right)=0\)

\(=>\left[{}\begin{matrix}x=0\\-3x+4=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=\dfrac{4}{3}\end{matrix}\right.\)

Bài 1: 

c) ĐKXĐ: \(x\notin\left\{\dfrac{1}{4};-\dfrac{1}{4}\right\}\)

Ta có: \(\dfrac{3}{1-4x}=\dfrac{2}{4x+1}-\dfrac{8+6x}{16x^2-1}\)

\(\Leftrightarrow\dfrac{-3\left(4x+1\right)}{\left(4x-1\right)\left(4x+1\right)}=\dfrac{2\left(4x-1\right)}{\left(4x+1\right)\left(4x-1\right)}-\dfrac{6x+8}{\left(4x-1\right)\left(4x+1\right)}\)

Suy ra: \(-12x-3=8x-2-6x-8\)

\(\Leftrightarrow-12x-3-2x+10=0\)

\(\Leftrightarrow-14x+7=0\)

\(\Leftrightarrow-14x=-7\)

\(\Leftrightarrow x=\dfrac{1}{2}\)(nhận)

Vậy: \(S=\left\{\dfrac{1}{2}\right\}\)

10 tháng 2 2016

bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 =>  x-1/3=y-2/4=z-3/5 

áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1

do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương t

 

 

24 tháng 3 2021

Bài 1: 

a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )

5 tháng 8 2023

a) \(2^x=8\)

⇔ \(2^x=2^3\)

⇒ \(x=3\)

b) \(3^x=27\)

⇔ \(3^x=3^3\)

⇒ \(x=3\)

c) \(\left(-\dfrac{1}{2}\right)x=\left(-\dfrac{1}{2}\right)^4\)

⇔ \(x=\left(-\dfrac{1}{2}\right)^4\div\left(-\dfrac{1}{2}\right)\)

⇔ \(x=\left(-\dfrac{1}{2}\right)^3\)

d) \(x\div\left(-\dfrac{3}{4}\right)=\left(-\dfrac{3}{4}\right)^2\)

⇔ \(x=\left(-\dfrac{3}{4}\right)^2\cdot\left(-\dfrac{3}{4}\right)\)

⇔ \(x=\left(-\dfrac{3}{4}\right)^3=-\dfrac{27}{64}\)

d) \(\left(x+1\right)^3=-125\)

⇔ \(\left(x+1\right)^3=\left(-5\right)^3\)

⇔ \(x+1=-5\)

⇔ \(x=-5-1=-6\)

2:

a: (x-1,2)^2=4

=>x-1,2=2 hoặc x-1,2=-2

=>x=3,2(loại) hoặc x=-0,8(loại)

b: (x-1,5)^2=9

=>x-1,5=3 hoặc x-1,5=-3

=>x=-1,5(loại) hoặc x=4,5(loại)

c: (x-2)^3=64

=>(x-2)^3=4^3

=>x-2=4

=>x=6(nhận)

5 tháng 11 2017

1. (x - 1)^3 + 3.(x - 3)^2 - (x + 2).(x^2 - 2x + 4) = (x + 2)^3 - (x - 3).(x^2 + 9) - 6x^2 + 5 
<=> x^3 - 3x^2 + 3x - 1 + 3(x^2 - 6x + 9) - (x^3 + 2^3) 
= x^3 + 6x^2 + 12x + 8 - (x^3 - 3x^2 + 9x -27) - 6x^2 + 5 
<=> x^3 - 3x^2 + 3x - 1 + 3x^2 - 18x + 27 - x^3 - 8 
= x^3 + 6x^2 + 12x + 8 - x^3 + 3x^2 - 9x + 27 - 6x^2 + 5 
<=> 3x - 18x -12x - 3x^2 + 9x = 27 + 5 + 8 + 8 + 1 - 27 
<=> - 3x^2 - 18x - 22 = 0 
<=> 3x^2 + 18x + 22 = 0 

5 tháng 11 2017

Nửa chu vi mảnh đất là: 

                                               120 : 2 = 60 (m)

Chiều dài hơn chiều rộng là:

                                               5 + 5 = 10 (m)

Chiều rộng là:

                                          ( 60 - 10 ) : 2 = 25 (m)

Chiều dài là:

                                                25 + 10 = 35 (m)

Diện tích là:

                                               25  35 = 875 ( )

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

1.

$x(x+2)(x+4)(x+6)+8$

$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$

$=a(a+8)+8$ (đặt $x^2+6x=a$)

$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$

Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

2.

$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$

$=5-(x^2+5x-6)(x^2+5x+6)$

$=5-[(x^2+5x)^2-6^2]$

$=41-(x^2+5x)^2\leq 41$

Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$