K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12

=35

13 tháng 12

   1 + 12 + 22

= 13 + 22

= 35

20 tháng 2 2022

\(\dfrac{2}{3}\)

20 tháng 2 2022

=\(\left(\dfrac{5}{17}+\dfrac{12}{17}\right)+\left(\dfrac{1}{22}-\dfrac{23}{22}\right)+\dfrac{2}{3}\)

=\(\dfrac{17}{17}-\dfrac{22}{22}+\dfrac{2}{3}\)

=\(1-1+\dfrac{2}{3}\)

=0+\(\dfrac{2}{3}\)

=\(\dfrac{2}{3}\)

21 tháng 6 2017

12+9+19+2=32

28+12+22+18=80

79+1+71+9=160

32+22+32+22=108

21 tháng 6 2017

12=9+19+2=42

28+12+22+18=80

79+1+71+9=160

32+22+32+22=108

Chúc bn hok giỏi

15 tháng 7 2018

- Đặt tính : Viết phép tính sao cho các số cùng hàng thẳng cột với nhau.

- Tính : Cộng, trừ các số lần lượt từ phải sang trái.

10 tháng 4 2017

13 tháng 11 2023

\(B=1\cdot2\cdot3+2\cdot3\cdot4+...+\left(n-1\right)\cdot n\cdot\left(n+1\right)\)

=>\(4B=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot4+...+\left(n-1\right)\cdot n\left(n+1\right)\cdot4\)

=>\(4B=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\left(5-1\right)+...+\left(n-1\right)\cdot n\left(n+1\right)\left[\left(n+2\right)-\left(n-2\right)\right]\)

=>\(4B=1\cdot2\cdot3\cdot4-1\cdot2\cdot3\cdot4+...+\left(n-2\right)\left(n-1\right)\cdot n\cdot\left(n+1\right)-\left(n-2\right)\cdot\left(n-1\right)\cdot n\cdot\left(n+1\right)+\left(n-1\right)\cdot n\left(n+1\right)\left(n+2\right)\)

=>\(4B=\left(n-1\right)\cdot n\cdot\left(n+1\right)\left(n+2\right)\)

=>\(B=\dfrac{\left(n-1\right)\cdot n\left(n+1\right)\left(n+2\right)}{4}\)

\(C=1\cdot4+2\cdot5+3\cdot6+...+n\left(n+3\right)\)

\(=1\cdot\left(1+3\right)+2\left(2+3\right)+...+n\left(n+3\right)\)

\(=\left(1^2+2^2+...+n^2\right)+3\left(1+2+...+n\right)\)

\(=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}+3\cdot\dfrac{n\left(n+1\right)}{2}\)

\(=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}+\dfrac{3n\left(n+1\right)}{2}\)

\(=\dfrac{n\left(n+1\right)}{2}\cdot\left(\dfrac{2n+1}{3}+3\right)\)

\(=\dfrac{n\left(n+1\right)}{2}\cdot\dfrac{2n+1+9}{3}\)

\(=\dfrac{n\left(n+1\right)\left(n+5\right)}{3}\)

\(D=1^2+2^2+...+n^2\)

\(=1+\left(1+1\right)\cdot2+\left(1+2\right)\cdot3+...+\left(1+n-1\right)\cdot n\)

\(=1+2+3+...+n+\left(1\cdot2+2\cdot3+...+\left(n-1\right)\cdot n\right)\)

Đặt \(A=1+2+3+...+n;E=1\cdot2+2\cdot3+...+\left(n-1\right)\cdot n\)

\(E=1\cdot2+2\cdot3+...+\left(n-1\right)\cdot n\)

=>\(3E=1\cdot2\cdot3+2\cdot3\cdot3+...+\left(n-1\right)\cdot n\cdot3\)

=>\(3E=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+...+\left(n-1\right)\cdot n\left[\left(n+1\right)-\left(n-2\right)\right]\)

=>\(3E=1\cdot2\cdot3-1\cdot2\cdot3+2\cdot3\cdot4+...+\left(n-1\right)\cdot n\left(n-2\right)-\left(n-1\right)\cdot n\left(n-2\right)+\left(n-1\right)\cdot n\cdot\left(n+1\right)\)

=>\(3E=\left(n-1\right)\cdot n\left(n+1\right)=n^3-n\)

=>\(E=\dfrac{n^3-n}{3}\)

\(A=1+2+3+...+n\)

Số số hạng là n-1+1=n(số)

Tổng của dãy số là: \(A=\dfrac{n\left(n+1\right)}{2}\)

=>\(D=\dfrac{n^3-n}{3}+\dfrac{n\left(n+1\right)}{2}\)

\(=\dfrac{2n^3-2n+3n^2+3n}{6}\)

=>\(D=\dfrac{2n^3+3n^2+n}{6}\)

1 tháng 10 2021

1,

=66

2,

=28

3,

=2016+450-2016

=450

4, 

=360-360+111

=111

5,

=1972-638-972

=1972-972-638

=362

1 tháng 10 2021

1) = 27 + 37 + 2

= 64 + 2 = 66

2) = 6 + 26 - 4 = 32 - 4 = 28

3) = (2016-2016)+450 = 450

4) =(364-364)+111 = 111

5) = (1972-972)-638 = 1000 - 638 = 362

30 tháng 11 2023

\(\left(12+x\right)-\left(22+x\right)\)

\(=12+x-22-x\)

\(=-10\)

Vậy giá trị của biểu thức đã cho là \(-10\) với mọi \(x\)