Giải bài tập này hộ mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4.
a.OB+ AB = OA
=> AB = OA - OB = 6-3 = 3 cm
b.Ta có: AB = OB = 3cm
=> A là trung điểm của OB
c.Ta có: AC + BC = AB
=> 1,5 + BC = 3
=> BC = 3-1,5 = 1,5 cm
Đk:\(3x+1\ge0\)
\(\left(1\right)\Leftrightarrow\left(2x-3\right)^2=-\sqrt{3x+1}+x+4\left(2\right)\)
Đặt \(\sqrt{3x+1}=-\left(2y-3\right)\Rightarrow\left(2y-3\right)^2=3x+1\left(y\le\frac{3}{2}\right)\)
\(\left(2\right)\Leftrightarrow\left(2x-3\right)^2=2y+x+1\)
Ta có hệ:
\(\begin{cases}\left(2x-3\right)^2=2y+x+1\\\left(2y-3\right)^2=3x+1\end{cases}\)
\(\Leftrightarrow\left(x-y\right)\left(2x+2y-5=0\right)\)
\(\Leftrightarrow x=y;x=\frac{5}{2}-y\).Thay vào hệ trên là ok
2)Đặt \(\sqrt[3]{81x-8}=3y-2\Rightarrow81x-8=27y^3-54y^2+36y-8\)
\(\Rightarrow y^3-2y^2+\frac{4}{3}y=3x\)
Khi đó ta có hệ sau:
\(\begin{cases}3y-2=x^3-2x^2+\frac{4}{3}x-2\\y^3-2y^2+\frac{4}{3}y=3x\end{cases}\)\(\Leftrightarrow\begin{cases}x^3-2x^2+\frac{4}{3}x=3y\\y^3-2y^2+\frac{4}{3}y=3x\end{cases}\)
Đối xứng nhé, ta chỉ cần trừ vế theo vế hai phương trình của hệ là xong
\(2x+\frac{\pi}{6}=\frac{\pi}{2}+k\pi\)
\(\Leftrightarrow2x=\frac{\pi}{3}+k\pi\)
\(\Leftrightarrow x=\frac{\pi}{6}+\frac{k\pi}{2}\)
\(B=\sqrt{371^2}+2\sqrt{31^2}-\sqrt{121^2}=371+2.31-121=371+62-121=312\)
Bài 5 hình 1: (tự vẽ hình nhé bạn)
a) Xét ΔABD và ΔACB ta có:
\(\widehat{BAD}\)= \(\widehat{BAC}\) (góc chung)
\(\widehat{ABD}\)= \(\widehat{ACB}\) (gt)
=> ΔABD ~ ΔACB (g-g)
=> \(\dfrac{AB}{AC}\) = \(\dfrac{BD}{CB}\) = \(\dfrac{AD}{AB}\) (tsđd)
b) Ta có: \(\dfrac{AB}{AC}\) = \(\dfrac{AD}{AB}\) (cm a)
=> \(AB^2\) = AD.AC
=> \(2^2\) = AD.4
=> AD = 1 (cm)
Ta có: AC = AD + DC (D thuộc AC)
=> 4 = 1 + DC
=> DC = 3 (cm)
c) Xét ΔABH và ΔADE ta có:
\(\widehat{AHB}\) = \(\widehat{AED}\) (=\(90^0\))
\(\widehat{ADB}\) = \(\widehat{ABH}\) (ΔABD ~ ΔACB)
=> ΔABH ~ ΔADE
=> \(\dfrac{AB}{AD}\) = \(\dfrac{AH}{AE}\) = \(\dfrac{BH}{DE}\) (tsdd)
Ta có: \(\dfrac{S_{ABH}}{S_{ADE}}\) = \(\left(\dfrac{AB}{AD}\right)^2\)= \(\left(\dfrac{2}{1}\right)^2\)= 4
=> đpcm
Tiếp bài 5 hình 2 (tự vẽ hình)
a) Xét ΔABC vuông tại A ta có:
\(BC^2\) = \(AB^2\) + \(AC^2\)
\(BC^2\) = \(21^2\) + \(28^2\)
BC = 35 (cm)
b) Xét ΔABC và ΔHBA ta có:
\(\widehat{BAC}\) = \(\widehat{AHB}\) ( =\(90^0\))
\(\widehat{ABC}\) = \(\widehat{ABH}\) (góc chung)
=> ΔABC ~ ΔHBA (g-g)
=> \(\dfrac{AB}{BH}\) = \(\dfrac{BC}{AB}\) (tsdd)
=> \(AB^2\) = BH.BC
=> \(21^2\) = 35.BH
=> BH = 12,6 (cm)
c) Xét ΔABC ta có:
BD là đường p/g (gt)
=> \(\dfrac{AD}{DC}\) = \(\dfrac{AB}{BC}\) (t/c đường p/g)
Xét ΔABH ta có:
BE là đường p/g (gt)
=> \(\dfrac{HE}{AE}\) = \(\dfrac{BH}{AB}\) (t/c đường p/g)
Mà: \(\dfrac{AB}{BC}\) = \(\dfrac{BH}{AB}\) (cm b)
=> đpcm
d) Ta có: \(\left\{{}\begin{matrix}\widehat{HBE}+\widehat{BEH}=90^0\\\widehat{ABD}+\widehat{ADB=90^0}\\\widehat{HBE}=\widehat{ABD}\end{matrix}\right.\)
=> \(\widehat{BEH}=\widehat{ADB}\)
Mà \(\widehat{BEH}=\widehat{AED}\) (2 góc dd)
Nên \(\widehat{ADB}=\widehat{AED}\)
=> đpcm
Vượn cổ | Người tối cổ | Người tinh khôn | |
Thời gian xuất hiện | khoảng 6 triệu năm trước | 4 triệu nằm trước đây | khoảng 4 vạn nằm trước đây |
Cấu tạo cơ thể
| - Có thể đi, đứng bằng 2 chân | - Đi, đứng bằng hai chân. - Trán thấp và bợt ra sau, u mày nổi cao, hộp sọ đã lớn hơn và hình thành trung tâm phát tiếng nói trong não. | - Như con người ngày nay |
Địa điểm xuất hiện | ở Đông Phi,Tây Á, Việt Nam | ở Đông Phi, Gia va, Bắc kinh, Thanh Hóa | ở hầu hết các châu lục |
\(Tacó:\left\{{}\begin{matrix}2Z+N=34\\N-Z=1\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}Z=11=P=E\\N=12\end{matrix}\right.\)
Olm chào em, hiện tại câu hỏi của em chưa hiển thị đấy có thể là do file mà em tải lên bị lỗi nên đã không hiển thị trên diễn đàn. Em nên viết đề bài trực tiếp trên Olm. Như vậy em sẽ không mắc phải lỗi file đề như vậy. Điều này giúp em nhanh chóng nhận được sự trợ giúp từ cộng đồng olm. Cảm ơn em đã đồng hành cùng Olm.
Bài nào có thấy đâu