giải giúp em bài 3,4,5 chi tiết với ạ, em cảm ơn ạ
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
Bài 4:
a: Xét (O) có \(\widehat{AMB};\widehat{ANB}\) là các góc nội tiếp chắn cung AB
nên \(\widehat{AMB}=\widehat{ANB}=\dfrac{\widehat{AOB}}{2}=\dfrac{120^0}{2}=60^0\)
b: Diện tích hình quạt tròn OAB là:
\(S_{q\left(OAB\right)}=\dfrac{\Omega\cdot R^2\cdot n}{180}=\dfrac{\Omega\cdot6^2\cdot120}{180}=24\Omega\)
Diện tích tam giác OAB là:
\(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB\cdot sinAOB=\dfrac{1}{2}\cdot6\cdot6\cdot sin120\simeq9\sqrt{3}\)(cm2)
Diện tích hình viên phân giới hạn bởi dây AB và cung nhỏ AB là:
\(24\Omega-9\sqrt{3}\simeq59,8\left(cm^2\right)\)
Bài 5:
a: Xét (O) có
ΔAMB nội tiếp
AB là đường kính
Do đó: ΔAMB vuông tại M
=>\(\widehat{AMB}=90^0\)
b: ΔAMB vuông tại M
=>AM\(\perp\)BC tại M
ΔCMA vuông tại M
mà MI là đường trung tuyến
nên IA=IM
Xét ΔIAO và ΔIMO có
IA=IM
OA=OM
IO chung
Do đó: ΔIAO=ΔIMO
=>\(\widehat{IAO}=\widehat{IMO}\)
=>\(\widehat{IMO}=90^0\)
=>IM là tiếp tuyến của (O)
c: Xét ΔMAB vuông tại M có \(cosMAB=\dfrac{MA}{AB}=\dfrac{R}{2R}=\dfrac{1}{2}\)
nên \(\widehat{MAB}=60^0\)
Xét ΔMNA vuông tại N có \(sinMAN=\dfrac{MN}{MA}\)
=>\(\dfrac{MN}{R}=sin60=\dfrac{\sqrt{3}}{2}\)
=>\(MN=\dfrac{R\sqrt{3}}{2}\)
\(\dfrac{MN}{AB}=\dfrac{R\sqrt{3}}{2}:2R=\dfrac{R\sqrt{3}}{2\cdot2R}=\dfrac{\sqrt{3}}{4}\simeq0,43\)