K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 4:

a: Xét (O) có \(\widehat{AMB};\widehat{ANB}\) là các góc nội tiếp chắn cung AB

nên \(\widehat{AMB}=\widehat{ANB}=\dfrac{\widehat{AOB}}{2}=\dfrac{120^0}{2}=60^0\)

b: Diện tích hình quạt tròn OAB là:

\(S_{q\left(OAB\right)}=\dfrac{\Omega\cdot R^2\cdot n}{180}=\dfrac{\Omega\cdot6^2\cdot120}{180}=24\Omega\)

Diện tích tam giác OAB là:

\(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB\cdot sinAOB=\dfrac{1}{2}\cdot6\cdot6\cdot sin120\simeq9\sqrt{3}\)(cm2)

Diện tích hình viên phân giới hạn bởi dây AB và cung nhỏ AB là:

\(24\Omega-9\sqrt{3}\simeq59,8\left(cm^2\right)\)

25 tháng 7 2017

bộ định bảo mọi người làm hết bài tập cho à

7 tháng 9 2023

web lập ra đéo để hỏi thì để đụ nát lồn má m ư

25 tháng 7 2017

I don't know

10 tháng 9 2023

     Olm chào em, cảm ơn em đã tham gia các khóa học của olm, cũng như các đánh giá và cảm nhận về trải nghiệm học của em trên nền tảng giáo dục trực tuyến olm.vn

     Olm chúc em học tập vui vẻ và hiệu quả trên olm, hy vọng em sẽ luôn đồng hành cùng om cả hiện tại và mãi mãi sau này

                                Thân mến!

 

Sửa đề: Trên dây CB

góc FCP=1/2*sd cung CB

góc FPC=góc EDB=90 độ-góc ABC

=90 độ-1/2*sđ cung AC

=góc CAB=1/2*sđ cung CB

=>góc FCP=góc FPC

=>ΔFPC cân tại F

4 tháng 2 2020

+) Kẻ \(OI\perp MN;OK\perp PQ\)

\(MI^2=OM^2-OI^2\Rightarrow MN^2=4R^2-4OI^2\)

\(PK^2=OP^2-OK^2\Rightarrow PQ^2=4R^2-4OK^2\)

\(\Rightarrow MN^2+PQ^2=8R^2-4\left(OI^2+OK^2\right)=8R^2-4OH^2\)

Áp dụng đẳng thức: \(x^2+y^2=\frac{\left(x+y\right)^2}{2}+\frac{\left(x-y\right)^2}{2}\)

Ta có: \(MN^2+PQ^2=\frac{\left(MN+PQ\right)^2}{2}+\frac{\left(MN-PQ\right)^2}{2}\)

\(\Leftrightarrow\left(MN+PQ\right)^2=2\left(MN^2+PQ^2\right)-\left(MN-PQ\right)^2\)

\(\Leftrightarrow MN+PQ=\sqrt{8\left(2R^2-OH^2\right)-\left(MN-PQ\right)^2}\)

Do \(8\left(2R^2-OH^2\right)\)không đổi nên

\(\left(MN+PQ\right)_{min}\Leftrightarrow\left(MN-PQ\right)^2_{max}\Leftrightarrow\hept{\begin{cases}MN_{max}\\PQ_{min}\end{cases}}\)hoặc \(\hept{\begin{cases}MN_{min}\\PQ_{max}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}MN=2R\\PQ\perp AB\left(H\right)\end{cases}}\)hoặc \(\Leftrightarrow\hept{\begin{cases}PQ=2R\\MN\perp AB\left(H\right)\end{cases}}\)

+) \(\left(MN+PQ\right)_{max}\Leftrightarrow\left(MN-PQ\right)^2_{min}\)\(\Leftrightarrow MN=PQ\Leftrightarrow OI=OK\Rightarrow\widehat{MHA}=\widehat{PHA}=45^0\)