Cho x,y>1. CMR: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)
Theo giả thiết,ta có: \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{cd}=\frac{3}{abc}\)
Nhân hai vế với abc: \(a+b+c=3\) tức là \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)
Lại có:\(3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{xyz}\)
Ta cần c/m: \(A\ge\frac{3}{2}\)
Do x,y,z > 0 áp dụng BĐT Cô si: \(x^3+y^3+z^3\ge3xyz=xy+yz+zx\)
Áp dụng BĐT Cô si: \(A\ge3\sqrt[3]{\frac{x^3y^3z^3}{\left(z+x^2\right)\left(x+y^2\right)\left(y+z^2\right)}}\)
\(=3xyz.\frac{1}{\sqrt[3]{\left(z+x^2\right)\left(x+y^2\right)\left(y+z^2\right)}}\)\(\ge3xyz.\frac{xy+yz+zx}{\left(x+y+z\right)+\left(x^2+y^2+z^2\right)}\)
\(=\frac{3\left(x^2y^2z+xy^2z^2+x^2yz^2\right)}{\left(x+y+z\right)+\left(x^2+y^2+z^2\right)}\ge\frac{3x^2y^2z^2}{\left(x+y+z\right)+\left(x^2+y^2+z^2\right)}\)
\(=\frac{3x^2y^2z^2}{\left(x+y+z\right)+\left(x+y+z\right)^2-2\left(xy+yz+zx\right)}\)
\(=\frac{3x^2y^2z^2}{\left(x+y+z\right)\left(x+y+z+1\right)-6xyz}\)
\(=\frac{3x^2y^2z^2}{xyz\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left[xyz\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+1\right]-6xyz}\)
\(=\frac{3x^2y^2z^2}{3xyz\left[3xyz+1\right]-6xyz}=\frac{3x^2y^2z^2}{9x^2y^2z^2-3xyz}\)
Đặt \(B=\frac{1}{A}=\frac{9x^2y^2z^2-3xyz}{3x^2y^2z^2}\)
Ta sẽ c/m: \(B\ge\frac{2}{3}\).Thật vậy,ta có:
\(B=\frac{1}{A}=\frac{9x^2y^2z^2-3xyz}{3x^2y^2z^2}=3-\frac{3}{3xyz}\)\(=3-\frac{1}{xyz}\ge0\)
Suy ra \(A\ge0?!?\) có gì đó sai sai.Ai biết chỉ giùm
Nghĩ mãi mới ra -.- Để ý cái số mũ 3 trên tử khó mà dùng trực tiếp Cô-si hoặc Bunhia nên phải tách nó ra
Ta có: \(\frac{x^3}{x^2+z}=\frac{x^3+xz}{x^2+z}-\frac{xz}{x^2+z}=x-\frac{xz}{x^2+z}\)
\(\ge x-\frac{xz}{2x\sqrt{z}}\)(Cô-si)
\(=x-\frac{\sqrt{z}}{2}\)
\(\ge x-\frac{z+1}{4}\)(Dùng bđt \(\sqrt{z}\le\frac{z+1}{2}\))
Tương tự \(\frac{y^3}{y^2+z}\ge y-\frac{x+1}{4}\)
\(\frac{z^3}{z^2+y}\ge z-\frac{y+1}{4}\)
Cộng từng vế của các bđt trên lại được
\(A\ge x+y+z-\frac{x+y+z+3}{4}=\frac{3x+3y+3z-3}{4}\)
\(=\frac{3\left(x+y+z\right)}{4}-\frac{3}{4}\)
Từ điều kiện \(xy+yz+zx=3xyz\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)
Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\left(a,b,c>0\right)\)được
\(3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)
\(\Rightarrow x+y+z\ge3\)
Quay trở lại với A
\(A\ge\frac{3\left(x+y+z\right)}{4}-\frac{3}{4}\ge\frac{3.3}{4}-\frac{3}{4}=\frac{3}{2}=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)(Do \(3=\frac{1}{x}+\frac{1}{y}=\frac{1}{z}\))
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y=z\\xy+yz+zx=3\end{cases}\Leftrightarrow x=y=z=1}\)
Vậy .............
Điều kiện x;y >=1Ta có: \(\frac{1}{\left(1+x\right)^2}+\frac{1}{\left(1+y\right)^2}\ge\frac{1}{1+xy}\Leftrightarrow\frac{2}{\left(1+x\right)^2}+\frac{2}{\left(1+y\right)^2}\ge\frac{2}{1+xy}\)
Ta có: \(\hept{\begin{cases}\left(1+x\right)^2\le\left(1^2+1^2\right)\left(x^2+1^2\right)=2\left(x^2+1\right)\\\left(1+y\right)^2\le2\left(y^2+1\right)\end{cases}}\)
Cần cm: \(\frac{1}{x^2+1}+\frac{1}{y^2+1}\ge\frac{2}{1+xy}\)
\(\Leftrightarrow\frac{x^2+y^2+2}{\left(x^2+1\right)\left(y^2+1\right)}\ge\frac{2}{1+xy}\)
\(\Leftrightarrow\left(x^2+y^2+2\right)\left(1+xy\right)\ge2\left(x^2+1\right)\left(y^2+1\right)\)
\(\Leftrightarrow x^2+x^3y+y^2+y^3x+2+2xy\ge2x^2y^2+2x^2+2y^2+2\)
\(\Leftrightarrow x^3y+xy^3+2xy-x^2-y^2-2x^2y^2\ge0\)
\(\Leftrightarrow xy\left(x^2+y^2-2xy\right)-\left(x^2-2xy+y^2\right)=\left(xy-1\right)\left(x-y\right)^2\ge0\)(đúng)
"=" khi x=y=1
Đề sai thì phải ah.
Với \(x=1;y=2\) ta có:
\(S=\frac{1}{\left(1+1\right)^2}+\frac{1}{\left(1+2\right)^2}\ge\frac{1}{1+1\cdot2}\)
\(S=\frac{1}{4}+\frac{1}{9}\ge\frac{1}{3}\)
\(S=\frac{13}{36}\ge\frac{1}{3}\left(VL\right)\)
Ta có: \(\left(x-y\right)^2\ge0\)
\(\Rightarrow x^2-2xy+y^2\ge0\)
\(\Rightarrow x^2+2xy+y^2\ge4xy\)
\(\Rightarrow\left(x+y\right)^2\ge4xy\)
\(\Rightarrow\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\)(đpcm)
Ta có vì : x,y > 0
và \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
Từ đề bài ta có:
\(\Leftrightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\)
\(\Leftrightarrow\frac{x+y}{xy}.\left(x+y\right).xy\ge\frac{4}{x+y}.xy\left(x+y\right)\)
Áp dụng đẳng thức Cô-si:
\(\Leftrightarrow x^2+2xy+y^2\ge4xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)
Vậy....
đpcm.
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{1+xy}+\frac{1}{1+xz}+\frac{1}{1+yz}\geq \frac{9}{xy+yz+xz+3}\) (1)
Theo hệ quả quen thuộc của BĐT AM-GM thì:
\(x^2+y^2+z^2\geq xy+yz+xz\)
\(\Leftrightarrow xy+yz+xz\leq 1(2)\)
Từ \((1);(2)\Rightarrow \frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\geq \frac{9}{4}\)
Dấu bằng xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)
Ta có
\(x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)\)
\(=>x^2y^2+y^2z^2+z^2x^2+2\left(xyz\right)\left(x+y+z\right)\ge3xyz\left(x+y+z\right)\)
\(=>\left(xy+yz+zx\right)^2\ge3\left(x+y+z\right)\)
\(=>\frac{1}{\left(x+y+z\right)}\ge\frac{3}{\left(xy+yz+zx\right)^2}\)
\(=>A\ge\frac{3}{\left(xy+yz+zx\right)^2}-\frac{2}{xy+yz+zx}\)
đặt
\(\frac{1}{xy+yz+zx}=t\)
\(=>A\ge3t^2-2t\)
mà \(\left(3t-1\right)^2\ge0=>9t^2-6t+1\ge0=>3t^2-2t+\frac{1}{3}\ge0\Rightarrow3t^2-2t\ge-\frac{1}{3}\)
\(=>A\ge-\frac{1}{3}\)(dpcm)
Dấu = xảy ra khi x=y=z=1
tinh tuoi con gai bang 1/4 tuoi me , tuoi con bang 1/5 tuoi me . tuoi con gai cong voi tuoi cua con trai
la 18 tuoi . hoi me bao nhieu tuoi ?
1) Biến đồi tương đương:
\(\left(x^2+y^2\right)^2\ge8\left(x-y\right)^2\)
\(\Leftrightarrow\left(x^2+y^2\right)^2\ge8xy\left(x-y\right)^2\)
\(\Leftrightarrow\left(x^2-4xy+y^2\right)^2\ge0\)(đúng)
2) Sửa đề: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\left(\text{với }xy\ge1\right)\)
\(\Leftrightarrow\frac{\left(x-y\right)^2\left(xy-1\right)}{\left(x^2+1\right)\left(y^2+1\right)\left(xy+1\right)}\ge0\) (đúng)
Cái này biến đổi tương đương nhé, t có mỗi cách đó !
ta có BĐT cần chứng minh
\(\Leftrightarrow\left(1+xy\right)\left(1+x^2\right)+\left(1+xy\right)\left(1+y^2\right)\ge2\left(1+y^2\right)\left(1+x^2\right)\)
\(\Leftrightarrow1+x^2+xy+x^3y+1+y^2+xy+y^3\ge2\left(1+x^2+y^2+x^2y^2\right)\)
\(\Leftrightarrow2xy+x^3y+xy^3-x^2-y^2-2x^2y^2\ge0\)
\(\Leftrightarrow xy\left(x-y\right)^2-\left(x-y\right)^2\ge0\Leftrightarrow\left(xy-1\right)\left(x-y\right)^2\ge0\)
bđt này luôn đúng với \(x,y\ge1\)
dấu = xảy ra <=> x=y >=1
^_^
chọn của vũ tiền châu nhé
nhớ đêý
cảm ơn
t i c k nhé
kí tên hà ơi quá khắm :vvv
Biến đổi tương đương, do mọi hạng tử đều dương nên:
\(\frac{x^2+y^2+2}{\left(1+x^2\right)\left(1+y^2\right)}\ge\frac{2}{1+xy}\)
\(\Leftrightarrow\left(1+xy\right)\left(x^2+y^2+2\right)\ge2\left(x^2y^2+x^2+y^2+1\right)\)
\(\Leftrightarrow x^2+y^2+2+x^3y+xy^3+2xy=2x^2y^2+2x^2+2y^2+2\)
\(\Leftrightarrow x^3y+xy^3-2x^2y^2-\left(x^2-2xy+y^2\right)\ge0\)
\(\Leftrightarrow xy\left(x-y\right)^2-\left(x-y\right)^2\ge0\)
\(\Leftrightarrow\left(xy-1\right)\left(x-y\right)^2\ge0\) luôn đúng do \(xy\ge1\Rightarrow xy-1\ge0\)
Dấu "=" xảy ra khi \(\left[{}\begin{matrix}xy=1\\x=y\end{matrix}\right.\)
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)
\(\Leftrightarrow\frac{1}{1+x^2}+\frac{1}{1+y^2}-\frac{2}{1+xy}\ge0\)
\(\Leftrightarrow\frac{\left(1+y^2\right)\left(1+xy\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}+\frac{\left(1+x^2\right)\left(1+xy\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}-\frac{2\left(1+x^2\right)\left(1+y^2\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)
\(\Leftrightarrow1+y^2+xy+xy^3+1+x^2+xy+x^3y-2-2x^2-2y^2-2x^2y^2\ge0\)
\(\Leftrightarrow2xy-x^2-y^2+xy^3+x^3y-2x^2y^2\ge0\)
\(\Leftrightarrow\left(xy-1\right)\left(x-y\right)^2\ge0\)
(đúng do \(xy>1,\left(x-y\right)^2\ge0\))
Bất đẳng thức cuối cùng đúng, mà ta biến đổi tương đương nên bất đẳng thức ban đầu cũng đúng.
Do đó ta có đpcm.