Bạn nào làm đc mình sẻ tick đúng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ !~ Vì \(\Delta EFG\) vuông tại E \(\Rightarrow\widehat{E}=90^0\)
Xét \(\Delta EFG\) có \(\widehat{E}=90^0\Rightarrow EF^2+EG^2=FG^2\left(ĐLPytago\right)\)
\(\Rightarrow EG^2=FG^2-EF^2=20^2-12^2=400-144=256=16^2\Rightarrow EG=16\left(cm\right)\)
Có diện tích tam giác ABC : \(S_{ABC}=\frac{1}{2}EF.EG=\frac{1}{2}EH.FG\)
\(\Rightarrow EF.EG=EH.FG\Leftrightarrow EH=\frac{EF.EG}{FG}=\frac{12.16}{20}=9,6\left(cm\right)\)
c) Xét tứ giác FMHN có
\(\widehat{NFM}=90^0\)
\(\widehat{FNH}=90^0\)
\(\widehat{FMH}=90^0\)
Do đó: FMHN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
Hình chữ nhật FMHN có đường chéo FH là tia phân giác của \(\widehat{NFM}\)(gt)
nên FMHN là hình vuông(Dấu hiệu nhận biết hình vuông)
a: Xét ΔEFG cân tại E có EH là đường phân giác
nên H là trung điểm của FG
hay HF=HG
b: Ta có: ΔEFG cân tại E
mà EH là đường trung tuyến
nên EH là đường cao
a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)
Do đó: ΔABE=ΔHBE
b: Ta có:ΔABE=ΔHBE
nên BA=BH và EA=EH
=>BE là đường trung trực của AH
c: Xét ΔAEK vuông tại A và ΔHEC vuông tại H có
EA=EH
\(\widehat{AEK}=\widehat{HEC}\)
Do đó: ΔAEK=ΔHEC
Suy ra: EK=EC
hay ΔEKC cân tại E
d: Xét ΔBKC có BA/AK=BH/HC
nên AH//KC
Xét ΔJHF vuông tại H và ΔKIG vuông tại I có
HF=IG
góc JFH=góc KGI
=>ΔJHF=ΔKIG
=>HF=IG
Xét tứ giác JHKI có
JH//KI
JH=KI
=>JHKI là hình bình hành
=>HL=LI
FH+LG=IG+LQ=IL=HL
Xét \(\Delta EFG\) vuông tại E có: \(GF^2=EG^2+EF^2\) (định lí Pytago)
\(\Rightarrow EF^2=GF^2-EG^2=10^2-6^2=64\)
\(\Rightarrow EF=\sqrt{64}=8\left(cm\right)\)
Ta có: \(S_{\Delta ABC}=\frac{EG.EF}{2}=\frac{EH.GF}{2}\)
\(\Rightarrow EG.EF=EH.GF\)
\(6.8=10EH=48\)
\(\Rightarrow EH=48\div10=4,8\left(cm\right)\)
Vậy \(EH=4,8cm\).
Áp dụng định lý Py ta go vào \(\Delta EFG\)ta có ;
\(FG^2=EF^2+EG^2\)
\(=>EF^2=10^2-6^2\)
\(=>EF=8cm\)
Xét \(\Delta FHE\)và \(\Delta FEG\)ta có:
\(F\)chung
\(FHE=FEG=90\)
\(=>\Delta FHE\approx\Delta FEG\)(g.g)
\(=>\frac{HE}{EG}=\frac{EF}{FG}\)
\(=>\frac{HE}{6}=\frac{8}{10}\)
\(=>EF=4,8cm\)