không dùng máy tính so sánh 2^91 và 5^35
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a=1+1/1.2+1+1/2.3+....+1+1/9.10
a=1+1+...+1(9 chữ số 1) +1/1-1/2+1/2-1/3+..+1/9-1/10
a=9+1-1/10
a=9+9/10=9+0.9=9.9
b=98/11<98/10=9.8<9.9.
vậy a>b
Ta có: a=1+1/2+1+1/6+1+1/12+...+1+1/90=9+1/2+1/6+...+1/90 > 9>99/11> b. Vậy, a>b
Với 0 ° < α < 90 ° ta có α tăng thì cotg α giảm
Ta có: 14 ° < 35 ° 12 ' , suy ra cotg 14 ° > cotg 35 ° 12 '
Ta có : 291 = (213)7 = 81927
535 = (55)7 = 31257
Vì 81927 > 31257
Nên : 291 > 535
291 và 535
291=213.7=81927
535=55.7=31257
Vì:81927>31257
=> 291>535.
Áp dụng bđt bunhia copski ta có:
`(sqrt2+sqrt3)^2<=(1+1)(2+3)`
`<=>(sqrt2+sqrt3)^2<=2.5=10`
`=>sqrt2+sqrt3<=sqrt{10}`
Dấu "=" không xảy ra
`=>sqrt2+sqrt3<sqrt{10}`
Ta có \(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6};\left(\sqrt{10}\right)^2=10=5+5\)
Mà \(\left(2\sqrt{6}\right)^2=24;5^2=25\)
\(\Rightarrow2\sqrt{6}< 5\Rightarrow\left(\sqrt{2}+\sqrt{3}\right)^2< \left(\sqrt{10}\right)^2\)
\(\Rightarrow\sqrt{2}+\sqrt{3}< \sqrt{10}\)
Ta có \(\left(\sqrt{2018}+\sqrt{2020}\right)^2=4038+2\sqrt{4076360}\) và \(\left(2\sqrt{2019}\right)^2=8076=4038+4038\)
Mà \(\left(2\sqrt{4076360}\right)^2=16305440\) và \(4038^2=16305444\)
\(\Rightarrow2\sqrt{4076360}< 4038\)
\(\Rightarrow\sqrt{2018}+\sqrt{2020}< 2\sqrt{2019}\)
\(\left(\sqrt{2018}+\sqrt{2020}\right)^2=4038+2\cdot\sqrt{2018\cdot2020}\)
\(\left(2\sqrt{2019}\right)^2=8076=4038+4038\)
mà \(2\cdot\sqrt{2018\cdot2020}< 4038\)
nên \(\sqrt{2018}+\sqrt{2020}< 2\sqrt{2019}\)
9 + 4 5 và 16
So sánh 4 5 và 5
Ta có: 16 > 5 ⇒ 16 > 5 ⇒ 4 > 5
Vì 5 > 0 nên 4. 5 > 5 . 5 ⇒ 4 5 > 5 ⇒ 9 + 4 5 > 5 + 9
Vậy 9 + 4 5 > 16
\(2^{91}>2^{90}=\left(2^5\right)^{18}=32^{18}\)
\(5^{35}< 5^{36}=\left(5^2\right)^{18}=25^{18}\)
mà \(25^{18}< 32^{18}\)
nên \(5^{35}< 25^{18}< 32^{18}< 2^{91}\)
=>\(5^{35}< 2^{91}\)